A new detection technique, pump-spin orientation-probe ultrafast spectroscopy, is developed to study the hole trapping dynamics in colloidal CdS nanocrystals. The hole surface trapping process spatially separates the electron-hole pairs excited by the pump pulse, leaves the core negatively charged, and thus enhances the electron spin signal generated by the orientation pulse. The spin enhancement transients as a function of the pump-orientation delay reveal a fast and a slow hole trapping process with respective time constants of sub-10 ps and sub-100 ps, orders of magnitude faster than that of carrier recombination. The power dependence of hole trapping dynamics elucidates the saturation process and relative number of traps, and suggests that there are three subpopulations of nanoparticles related to hole surface trapping, one with the fast trapping pathway only, another with the slow trapping pathway only, and the third with both pathways together.
We report experimental studies of optical manipulation of electron spin coherence by linearly or circularly polarized short laser pulses at room temperature, in an ensemble of colloidal CdS quantum dots. In addition to a conventional pump-probe configuration, a linearly polarized prepump pulse before the pump could significantly enhance the amplitude of pump-induced electron spin coherence, owing to the fact that prepump pulses produce more resident electrons. And a linearly or circularly polarized control pulse after the pump will efficiently suppress the spin coherence, because of the re-excitation of spin-polarized electrons to trion states by the absorption of control photons.
We present an experimental investigation of optical spin orientation in colloidal CdS quantum dots (QDs) by a femtosecond laser pulse at room temperature. The spin carrier and its spin-generation process are clarified. Firstly, the observed spin signals of CdS QDs in time-resolved Faraday rotation measurements are shown to belong to electron carriers, by comparing the spin dephasing dynamics and Landé g factor between CdS QDs and bulk materials. Secondly, spin dynamics unaffected by the faster carrier recombination suggests that the spin-polarized electrons are not photoexcited but resident in the dots. Moreover, hole spins should dephase very fast compared with electron spins, otherwise the trion (two electrons with opposite spin orientations and one hole) recombination process will affect the resident electron spin signals. The electron spin is generated in a short time of which the excitation light is absorbed and the resident electron is excited to trion states, i.e., of pulse durations. Due to fast hole spin dephasing, trion recombination gives null spin signals, and the subsequent electron spin dynamics is controlled by its intrinsic mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.