Colorectal cancer liver metastasis (CRLM) was one of the cancers with high mortality. Clinically, the target point was determined by invasive detection, which increased the suffering of patients and the cost of treatment. If the target point was found through the relationship between early radiomic information and genetic information, it was expected to assist doctors in diagnosing disease, formulating treatment plans, and reducing the pain and burden of patients. In this study, gene coexpression analysis and hub gene mining were first performed on the gene data; secondly, quantitative radiomic features were extracted from CT-enhanced radiomic data to obtain features highly correlated with CRLM; and finally, we analyzed the relationship between gene features and radiomic feature correlations by establishing a link between early radiomic features and gene sequencing and finding highly correlated expressions. This experiment demonstrated that radiomic features could be used to mine gene attributes. Based on the four previously identified genes (NRAS, KRAS, BRAF, and PIK3CA), we identified two novel genes, MAPK1 and STAT1, highly associated with CRLM. There were specific correlations between these 6 genes and radiomic features (shape_elongation, glcm, glszm, firstorder_10percentile, gradient, exponent_firstorder_Range, and gradient_glszm_SmallAreaLowGrayLevel). Therefore, this paper established the correlation between radiomic features and genes, and through radiomic features, we could find the genes associated with them, which was expected to achieve noninvasive prediction of liver metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.