The van der Waals (vdW) materials offer an opportunity to build all-two-dimensional (all-2D) spintronic devices with high-quality interfaces regardless of the lattice mismatch. Here, we report on an all-2D vertical spin valve that combines a typical layered semiconductor MoS 2 with vdW ferromagnetic metal Fe 3 GeTe 2 (FGT) flakes. The linear current−voltage curves illustrate that Ohmic contacts are formed in FGT/MoS 2 interfaces, while the temperature dependence of the junction resistance further demonstrates that the MoS 2 interlayer acts as a conducting layer instead of a tunneling layer. In addition, the magnitude of the magnetoresistance (MR) of 3.1% at 10 K is observed, which is around 8 times larger than that of the reported spin valves based on MoS 2 sandwiched by conventional ferromagnetic electrodes. The MR decreasing monotonically with increasing temperature follows the Bloch's law. As the bias current decreases exponentially, the MR increases linearly up to a maximum value of 4.1%. Our results reveal the potential opportunities of vdW heterostructures for developing novel spintronic devices.
2D layered chalcogenide semiconductors have been proposed as a promising class of materials for low‐dimensional electronic, optoelectronic, and spintronic devices. Here, all‐2D van der Waals vertical spin‐valve devices, that combine the 2D layered semiconductor InSe as a spacer with the 2D layered ferromagnetic metal Fe3GeTe2 as spin injection and detection electrodes, are reported. Two distinct transport behaviors are observed: tunneling and metallic, which are assigned to the formation of a pinhole‐free tunnel barrier at the Fe3GeTe2/InSe interface and pinholes in the InSe spacer layer, respectively. For the tunneling device, a large magnetoresistance (MR) of 41% is obtained under an applied bias current of 0.1 µA at 10 K, which is about three times larger than that of the metallic device. Moreover, the tunneling device exhibits a lower operating bias current but a more sensitive bias current dependence than the metallic device. The MR and spin polarization of both the metallic and tunneling devices decrease with increasing temperature, which can be fitted well by Bloch's law. These findings reveal the critical role of pinholes in the MR of all‐2D van der Waals ferromagnet/semiconductor heterojunction devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.