In this paper, a new discrete reaching law with improved quasi-sliding-mode domain (QSMD) is proposed and a sliding-mode controller is designed for discrete-time systems with uncertainties. By redefining the change rate as the second order difference of the system uncertainties and adopting the continuous approximate function, smaller width of the QSMD can be guaranteed. Moreover, the QSMD of the proposed reaching law is obtained and the system dynamics in and out the QSMD are theoretically analyzed. Perturbation estimation technique is employed to estimate the unknown uncertainties. Thus, no prior knowledge of the uncertainty bound is required. Both numerical simulations and experimental results on a piezoelectric actuator are presented to demonstrate the performance of the proposed method.Index Terms-Continuous approximate function, discrete-time sliding-mode control (DSMC), reaching law, second order difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.