Enfuvirtide (T20) is the first and only HIV-1 fusion inhibitor approved for clinical use, but it can easily induce drug resistance limiting its practical application. A novel anti-HIV peptide, termed sifuvirtide, was designed based on the three-dimensional structure of the HIV-1 gp41 fusogenic core conformation. Here we report its in vitro anti-HIV potency, its mechanism of action, as well as the results from Phase Ia clinical studies. We demonstrated that sifuvirtide inhibited HIV-1-mediated cellcell fusion in a dose-dependent manner and exhibited high potency against infections by a wide range of primary and laboratory-adapted HIV-1 isolates from multiple genotypes with R5 or X4 phenotypes. Notably, sifuvirtide was also highly effective against T20-resistant strains. Unlike T20, sifuvirtide could efficiently block six-helix bundle formation in a dominant negative fashion. These results suggest that sifuvirtide has a different mechanism of action from that of T20. Phase Ia clinical studies of sifuvirtide (FS0101) in 60 healthy individuals demonstrated good safety, tolerability, and pharmacokinetic profiles. A single dose regimen (5, 10, 20, 30, and 40 mg) by subcutaneous injection once daily at abdominal sites was well tolerated without serious adverse events. Pharmacokinetic studies of single and multiple administration of sifuvirtide showed that its decay half-lives were 20.0 ؎ 8.6 h and 26.0 ؎ 7.9 h, respectively. In summary, sifuvirtide has potential to become an ideal fusion inhibitor for treatment of HIV/AIDS patients, including those with HIV-1 strains resistant to T20.
Nesfatin-1 is an anorexigenic peptide involved in energy homeostasis. Recently, nesfatin-1 was reported to decrease blood glucose level and improve insulin sensitivity in high-fat diet-fed rats. However, little information is known about the influence of nesfatin-1 on lipid metabolism either in physiological or diabetic condition. This study undertook whether nesfatin-1 was involved in the pathophysiology in Streptozotocin-induced type 2 diabetic mice (T2DM), which was induced by a combination of high-calorie diet and two low-doses Streptozotocin. We observed that plasma nesfatin-1 was significantly increased while expression of nesfatin-1 neurons were decreased in hypothalamus in diabetes group compared to only high-calorie diet control group; intravenous injection of nesfatin-1 decreased 0–1h, 0–2h, 0–3h cumulative food intake in T2DM, but 0–24h total food intake had no difference between groups. Body weight and plasma FFA were normalized after nesfatin-1(10 µg/Kg) administration for 6 days. These results suggested that nesfatin-1 improved lipid disorder in T2DM. It was found that blood glucose and insulin resistance coefficient decreased with treatment of nesfatin-1 (both in 1 µg/Kg and 10 µg/Kg doses) in diabetes mice. For further understanding the role of nesfatin-1 on lipid metabolism, we detected p-AMPK and p-ACC of skeletal muscle in T2DM using western blotting. The expression of p-AMPK and p-ACC increased when nesfatin-1 was given with doses 1 µg/Kg but not in doses 10 µg/Kg. Taken together, nesfatin-1 participated in the development of T2DM and stimulated free fatty acid utilization via AMPK-ACC pathway in skeletal muscle in T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.