Aqueous zinc batteries are appealing devices for cost-effective and environmentally sustainable energy storage. However, the zinc metal deposition at the anode strongly influences the battery cycle life and performance. To circumvent this issue, here we propose the use of lanthanum nitrate (La(NO3)3) as supporting salt for aqueous zinc sulfate (ZnSO4) electrolyte solutions. Via physicochemical and electrochemical characterizations, we demonstrate that this peculiar electrolyte formulation weakens the electric double layer repulsive force, thus, favouring dense metallic zinc deposits and regulating the charge distribution at the zinc metal|electrolyte interface. When tested in Zn||VS2 full coin cell configuration (with cathode mass loading of 16 mg cm−2), the electrolyte solution containing the lanthanum ions enables almost 1000 cycles at 1 A g−1 (after 5 activation cycles at 0.05 A g−1) with a stable discharge capacity of about 90 mAh g−1 and an average cell discharge voltage of ∼0.54 V.
Single-stage reconstructive surgery resulted in 96% good-to-excellent results. Recalcitrant stenosis developed in 4% of patients. Stents, postoperative edema, mitomycin use, and vocal cord involvement are risks for recurrence. Recurrence was related to reactivation of disease in 14 patients and to technical problems in 6 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.