Workplace video surveillance and timely response to operational violations are critical to avoid operator injuries at power construction sites. Here, a system that combines remote substation construction management and artificial intelligence object detection techniques to intellectualize the power construction management process and identify violations during construction in real time is proposed. To improve the detection accuracy, a data augmentation method, including three operations: (1) object segmentation and background fusion; (2) partial erasing; and (3) other basic transformations, is also proposed. Six variants of the You Only Look Once (YOLO) model are trained as detectors for comparative experiments on a dataset collected at the practical construction site. The experimental results show that the detection precision and recall of the YOLOv5‐s model are 0.852 and 0.922, with high accuracy and low miss rate, which meet the requirements of robustness and accuracy in detecting realistic power construction violations.
Object detection-based deep learning by using the looking and thinking twice mechanism plays an important role in electrical construction work. Nevertheless, the use of this mechanism in object detection produces some problems, such as calculation pressure caused by multilayer convolution and redundant features that confuse the network. In this paper, we propose a self-recurrent learning and gap sample feature fusion-based object detection method to solve the aforementioned problems. The network consists of three modules: self-recurrent learning-based feature fusion (SLFF), residual enhancement architecture-based multichannel (REAML), and gap sample-based features fusion (GSFF). SLFF detects objects in the background through an iterative convolutional network. REAML, which serves as an information filtering module, is used to reduce the interference of redundant features in the background. GSFF adds feature augmentation to the network. Simultaneously, our model can effectively improve the operation and production efficiency of electric power companies’ personnel and guarantee the safety of lives and properties.
Object detection is a classical research problem in computer vision, and it is widely used in the automatic monitoring field of various production safety. However, current object detection techniques often suffer low detection accuracy when an image has a complex background. To solve this problem, this paper proposes a double U-shaped multireinforced unit structure network (DUMRN). The proposed network consists of a detection module (DM), a reinforced module (RM), and a salient loss function (SLF). Extensive experiments on five public datasets and a practical application dataset are conducted and compared against nine state-of-the-art methods. The experiment results show the superiority of our method over the state of the art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.