Due to the complementary characteristics of visual and LiDAR information, these two modalities have been fused to facilitate many vision tasks. However, current studies of learning-based odometries mainly focus on either the visual or LiDAR modality, leaving visual–LiDAR odometries (VLOs) under-explored. This work proposes a new method to implement an unsupervised VLO, which adopts a LiDAR-dominant scheme to fuse the two modalities. We, therefore, refer to it as unsupervised vision-enhanced LiDAR odometry (UnVELO). It converts 3D LiDAR points into a dense vertex map via spherical projection and generates a vertex color map by colorizing each vertex with visual information. Further, a point-to-plane distance-based geometric loss and a photometric-error-based visual loss are, respectively, placed on locally planar regions and cluttered regions. Last, but not least, we designed an online pose-correction module to refine the pose predicted by the trained UnVELO during test time. In contrast to the vision-dominant fusion scheme adopted in most previous VLOs, our LiDAR-dominant method adopts the dense representations for both modalities, which facilitates the visual–LiDAR fusion. Besides, our method uses the accurate LiDAR measurements instead of the predicted noisy dense depth maps, which significantly improves the robustness to illumination variations, as well as the efficiency of the online pose correction. The experiments on the KITTI and DSEC datasets showed that our method outperformed previous two-frame-based learning methods. It was also competitive with hybrid methods that integrate a global optimization on multiple or all frames.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.