SUMMARY
Abundantly expressed in fetal tissues and adult muscle, the developmentally regulated H19 long noncoding RNA (lncRNA) has been implicated in human genetic disorders and cancer. However, how H19 acts to regulate gene function has remained enigmatic, despite the recent implication of its encoded miR675 in limiting placental growth. We noted that vertebrate H19 harbors both canonical and noncanonical binding sites for the let-7 family of microRNAs, which plays important roles in development, cancer, and metabolism. Using H19 knockdown and overexpression, combined with in vivo crosslinking and genome-wide transcriptome analysis, we demonstrate that H19 modulates let-7 availability by acting as a molecular sponge. The physiological significance of this interaction is highlighted in culture where H19 depletion causes precocious muscle differentiation, a phenotype recapitulated by let-7 overexpression. Our results reveal an unexpected mode of action of H19 and identify this lncRNA as an important regulator of the major let-7 family of microRNAs.
Aromaticity is a concept invented to account for the unusual stability of an important class of organic molecules: the aromatic compounds. Here we report experimental and theoretical evidence of aromaticity in all-metal systems. A series of bimetallic clusters with chemical composition MAl4- (M = Li, Na, or Cu), was created and studied with photoelectron spectroscopy and ab initio calculations. All the MAl4- species possess a pyramidal structure containing an M+ cation interacting with a square Al4(2-) unit. Ab initio studies indicate that Al4(2-) exhibits characteristics of aromaticity with two delocalized pi electrons (thus following the 4n + 2 electron counting rule) and a square planar structure and maintains its structural and electronic features in all the MAl4- complexes. These findings expand the aromaticity concept into the arena of all-metal species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.