Forest soils contain a large amount of organic carbon and contribute to terrestrial carbon sequestration. However, we still have a poor understanding of what nutrients limit soil microbial metabolism that drives soil carbon release across the range of boreal to tropical forests. Here we used ecoenzymatic stoichiometry methods to investigate the patterns of microbial nutrient limitations within soil profiles (organic, eluvial and parent material horizons) across 181 forest sites throughout China. Results show that, in 80% of these forests, soil microbes were limited by phosphorus availability. Microbial phosphorus limitation increased with soil depth and from boreal to tropical forests as ecosystems become wetter, warmer, more productive, and is affected by anthropogenic nitrogen deposition. We also observed an unexpected shift in the latitudinal pattern of microbial phosphorus limitation with the lowest phosphorus limitation in the warm temperate zone (41-42°N). Our study highlights the importance of soil phosphorus limitation to restoring forests and predicting their carbon sinks.
The loss of phosphorus (P) during the early pedogenesis stage is important at the ecosystem level, and it also plays an important role in the global P cycle. The seasonal variation of total P (Pt) and its fractions along a young soil chronosequence (Hailuogou chronosequence) on the eastern slope of Gongga Mountain, SW China, was investigated based on the modified Hedley fractionation technique to understand P loss during the early pedogenesis stage. The results showed that the mineral P (mainly apatite) was the dominant fraction of Pt in the C horizon of the soil, and the seasonal difference in Pt and its fractions was insignificant. In the A horizon, Pt concentrations decreased markedly compared with those in the C horizon, and as the age of the soil increased, the inorganic P (Pi) significantly decreased and the organic P (Po) prominently increased. Seasonally, the P fractions exhibited various distributions in the A horizon. The variation of Pt and its fractions revealed that the P loss was rapid along the 120-year soil chronosequence. The concentrations of Pt in the original minerals decreased more than 50% in the 52 years since the glacier retreated, and the depletion reached almost 80% at the 120-year pedogenesis. The loss of P from the soil of the Hailuogou chronosequence was mainly attributed to weathering, plant uptake, and transport by runoff. The data obtained indicated that the glacier retreat chronosequence could be used to elucidate the fast rate of P loss during the early pedogenesis stage. Abstract The loss of phosphorus (P) during the early pedogenesis stage is important at the ecosystem level, and it also plays an important role in the global P cycle. The seasonal variation of total P (Pt) and its fractions along a young soil chronosequence (Hailuogou chronosequence) on the eastern slope of Gongga Mountain, SW China, was investigated based on the modified Hedley fractionation technique to understand P loss during the early pedogenesis stage. The results showed that the mineral P (mainly apatite) was the dominant fraction of Pt in the C horizon of the soil, and the seasonal difference in Pt and its fractions was insignificant. In the A horizon, Pt concentrations decreased markedly compared with those in the C horizon, and as the age of the soil increased, the inorganic P (Pi) significantly decreased and the organic P (Po) prominently increased. Seasonally, the P fractions exhibited various distributions in the A horizon. The variation of Pt and its fractions revealed that the P loss was rapid along the 120-year soil chronosequence. The concentrations of Pt in the original minerals decreased more than 50% in the 52 years since the glacier retreated, and the depletion reached almost 80% at the 120-year pedogenesis. The loss of P from the soil of the Hailuogou chronosequence was mainly attributed to weathering, plant uptake, and transport by runoff. The data obtained indicated that the glacier retreat chronosequence could be used to elucidate the fast rate of P loss during the early pedogenesis sta...
Organic aerosols make up the significant fraction (20%-90%) of tropospheric aerosols. They could alter the water solubility or hygroscopic properties of aerosols and serve as cloud condensation nuclei (CCN) or ice nuclei, thereby influencing the radiative forcing of the atmosphere and climate change (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.