The neurotropic parasite is a globally distributed parasitic protozoan among mammalian hosts, including humans. During the course of infection, the CNS is the most commonly damaged organ among invaded tissues. The polymorphic rhoptry protein 18 (ROP18) is a key serine (Ser)/threonine (Thr) kinase that phosphorylates host proteins to modulate acute virulence. However, the basis of neurotropism and the specific substrates through which ROP18 exerts neuropathogenesis remain unknown. Using mass spectrometry, we performed proteomic analysis of proteins that selectively bind to active ROP18 and identified RTN1-C, an endoplasmic reticulum (ER) protein that is preferentially expressed in the CNS. We demonstrated that ROP18 is associated with the N-terminal portion of RTN1-C and specifically phosphorylates RTN1-C at Ser7/134 and Thr4/8/118. ROP18 phosphorylation of RTN1-C triggers ER stress-mediated apoptosis in neural cells. Remarkably, ROP18 phosphorylation of RTN1-C enhances glucose-regulated protein 78 (GRP78) acetylation by attenuating the activity of histone deacetylase (HDAC), and this event is associated with an increase of neural apoptosis. These results clearly demonstrate that both RTN1-C and HDACs are involved in ROP18-mediated pathogenesis of encephalitis during infection.
Toxoplasmosis, a common parasitic disease, is caused by Toxoplasma gondii, which infects approximately 30% of the world’s population. This obligate intracellular protozoan causes significant economic losses and poses serious public health challenges worldwide. However, the development of an effective toxoplasmosis vaccine in humans remains a challenge to date. In this study, we observed that the knockout of calcium-dependent protein kinase 3 (CDPK3) in the type II ME49 strain greatly attenuated virulence in mice and significantly reduced cyst formation. Hence, we evaluated the protective immunity of ME49Δcdpk3 as a live attenuated vaccine against toxoplasmosis. Our results showed that ME49Δcdpk3 vaccination triggered a strong immune response marked by significantly elevated proinflammatory cytokine levels, such as IFN-γ, IL-12, and TNF-α, and increased the percentage of CD4+ and CD8+ T-lymphocytes. The high level of Toxoplasma-specific IgG was maintained, with mixed IgG1/IgG2a levels. Mice vaccinated with ME49Δcdpk3 were efficiently protected against the tachyzoites of a variety of wild-type strains, including type I RH, type II ME49, Chinese 1 WH3 and Chinese 1 WH6, as well as the cysts of wild-type strains ME49 and WH6. These data demonstrated that ME49Δcdpk3 inoculation induced effective cellular and humoral immune responses against acute and chronic Toxoplasma infections with various strains and was a potential candidate to develop a vaccine against toxoplasmosis.
Non-small-cell lung carcer (NSCLC), the main histological subtype of lung cancer, is responsible for significant morbidity and mortality worldwide. Telocinobufagin, an active compound of the Chinese traditional medicine ChanSu, has antitumor effects, but its mechanism of action remains unknown. Therefore, we investigated the effect of telocinobufagin on NSCLC growth and metastasis and its possible mechanism of action, in vitro and in vivo. Cell proliferation, migration, and apoptosis were measured by methyl thiazol tetrazolium assay, colony formation, 5-ethynyl-2′-deoxyuridine incorporation, Transwell migration, wound healing, and flow cytometry analysis. A mouse xenograft model was used to evaluate tumor formation in vivo. Telocinobufagin was found to suppress proliferation and metastasis and induce apoptosis in human NSCLC cells. Moreover, telocinobufagin was able to significantly inhibit STAT3 phosphorylation at tyrosine 705 (Y 705 ) and its downstream targets. Additionally, telocinobufagin also impaired the IL-6-induced nuclear translocation of STAT3. Consistent with the in vitro experiments, telocinobufagin reduced the A549 xenograft tumor burden and the levels of P-STAT3 Y705 , MCL1, BCL2, and cleaved PARP1 in vivo. These results support telocinobufagin as a promising STAT3 signaling inhibitor candidate for the treatment of NSCLC patients.
Background and Purpose Pulmonary arterial hypertension (PAH) is a pulmonary vasculature obstructive disease that leads to right heart failure and death. Maresin 1 is an endogenous lipid mediator known to promote inflammation resolution. However, the effect of Maresin 1 on PAH remains unclear. Experimental Approach The serum Maresin 1 concentration was assessed using UPLC. A mouse model of PAH was established by combining the Sugen 5416 injection and hypoxia exposure. After treatment with Maresin 1, the right ventricular systolic pressure (RVSP) and right ventricular function were measured by haemodynamic measurement and echocardiography, respectively. Vascular remodelling was evaluated by histological staining. Confocal microscopy and western blot were used to test related protein expression. In vitro cell migration, proliferation and apoptosis assays were performed in primary rat pulmonary artery smooth muscle cells (PASMCs). Western blotting and siRNA transfection were used to clarify the mechanism of Maresin 1. Key Results Endogenous serum Maresin 1 was decreased in PAH patients and mice. Maresin 1 treatment decreased RVSP and attenuated right ventricular dysfunction (RVD) in the murine PAH model. Maresin 1 reversed abnormal changes in pulmonary vascular remodelling, attenuating endothelial to mesenchymal transformation and enhancing apoptosis of α‐SMA positive cells. Furthermore, Maresin 1 inhibited PASMC proliferation and promoted apoptosis by inhibiting STAT, AKT, ERK, and FoxO1 phosphorylation via LGR6. Conclusion and Implications Maresin 1 improved abnormal pulmonary vascular remodelling and right ventricular dysfunction in PAH mice, targeting aberrant PASMC proliferation. This suggests Maresin 1 may have a potent therapeutic effect in vascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.