Popular apps on the Apple iOS App Store can generate millions of dollars in profit and collect valuable personal user information. Fraudulent reviews could deceive users into downloading potentially harmful spam apps or unfairly ignoring apps that are victims of review spam. Thus, automatically identifying spam in the App Store is an important problem. This paper aims to introduce and characterize novel datasets acquired through crawling the iOS App Store, compare a baseline Decision Tree model with a novel Latent Class graphical model for classification of app spam, and analyze preliminary results for clustering reviews.
Stochastic programming is employed to achieve optimization for the multiperiod supply chain problem in a refinery with multiple operation modes under the uncertainty of product yields. With dramatic fluctuations of product yields at the beginning of operation mode changeover, the product yields tends to stabilize after the changeover is finished. Markov chain is utilized here to describe the dynamic characteristic of product yield fluctuations. The distribution of yield fluctuation in each period is usually unknown since it depends on the decision variable of operation mode changeover. Therefore, the resulting chance constrained programming is more complicated than general situations where the distribution characteristic of stochastic variable is known in each period. This problem can be solved by the big-M method and by transforming chance constrained inequalities into a group of equivalent deterministic inequalities. This method provides a universal approach for similar chance constrained programming in which the distribution of stochastic variable depends on binary decision variables. Case studies show that the proposed modeling and solving approach can provide an effective decision-making guidance that balances confidence level and economic interests for supply chain optimization problems with multiple operation modes under yield uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.