This paper describes a planning framework of environment detection for unmanned ground vehicle (UGV) in the completely unknown off-road environment, which is able to quickly guide the UGV with nonholonomic constraints to detect the environmental information as much as possible. The contributions of this paper contain four fold. First, due to the sensor characteristics of camera and lidar, we present a two-layer combined detection map which can accurately represent the detected and undetected area. Second a frontier extraction algorithm based on RRT considering information acquisition and nonholonomic constraints of UGV is used to extract the target pose. Third, we use a search path planning method based on motion primitive which is able to handle obstacle constraints of environment, nonholonomic constraints of UGV. Fourth the heuristic fusion is proposed to guide the extension of motion primitives to generate a kinodynamically feasible and collision-free trajectory in real-time. And it works well in both simulation and real scene.
In order to achieve the integration of driver experience and heterogeneous vehicle platform characteristics in the motion planning algorithm, based on the driver-behavior-based transferable motion primitives, a general motion planning framework for oine generation and online selection of motion primitives (MPs) is proposed. The optimal control theory is applied to solve the boundary value problems in the process of generating MPs, where the driver behaviors and the vehicle motion characteristics are integrated into the optimization in the form of constraints. Moreover, this paper proposes a layered, unequal-weighted MPs selection framework and utilizes the combination of environmental constraints, nonholonomic vehicle constraints, trajectory smoothness, and collision risk as the single-step extension evaluation index. The library of MPs generated oine demonstrates that the proposed generation method realizes the eective expansion of the MP types and achieves the diverse generation of MPs with various velocity attributes and platform types. We also present how the MP selection algorithm utilizes the unique MP library to achieve the online extension of MP sequences. The results show that the proposed motion planning framework can not only improve the eciency and rationality of the algorithm based on driving experience but also can transfer between heterogeneous vehicle platforms and highlight the unique motion characteristics of the platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.