Sonic hedgehog (Shh) is a morphogen critically involved in development that is reexpressed in atherosclerotic lesions. It also stimulates proliferation of vascular smooth muscle cells (SMCs). Autophagy in vascular SMCs is known to promote SMC survival and increase plaque stability. The aim of this study was to investigate whether Shh induces autophagy of vascular SMCs. Our study showed that both Shh protein and microtubule-associated protein 1 light chain 3 (LC3)-II were increased in SMCs within neointimal lesions of mouse common carotid arteries. In cultured mouse aortic SMCs, recombinant mouse Shh stimulated LC3-II levels. Overexpression of wild-type mouse Shh through the tetracycline-regulated expression-inducible system in human aortic SMCs time-dependently increased the levels of LC3-II and also stimulated protein kinase B (AKT) phosphorylation. Pretreatment with AKT inhibitor IV (AKTI IV) inhibited AKT phosphorylation and the increase in LC3-II. Shh-induced autophagy was further confirmed by the formation of autophagosomes as detected by immunostaining and transmission electron microscopy, which was inhibited by AKTI IV. Shh further increased SMC LC3-II in the presence of bafilomycin A1, (2S,3S)-trans-epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester, and pepstatin A or siRNA for the autophagy-related gene 7 (ATG7). In addition, Shh induced SMC proliferation, which was inhibited not only by AKTI IV but also by cyclopamine, an inhibitor of Shh receptor. Inhibition of autophagy with 3-methyladenine (3-MA), bafilomycin A1, or ATG7 siRNA resulted in inhibition of cell proliferation. Treatment with 3-MA, AKTI IV, or cyclopamine inhibited neointima formation in mouse common carotid arteries. Taken together, our results have shown that Shh induces autophagy of vascular SMCs involving AKT activation, suggesting a role of autophagy in Shh-induced cellular responses.
The suppressor of cytokine signaling (SOCS) family of negative regulatory proteins is up-regulated in response to several cytokines and pathogen-associated molecular patterns (PAMP) and suppresses cellular signaling responses by binding receptor phosphotyrosine residues. Exposure of bone marrow-derived dendritic cells (BMDC) to 1D8 cells, a murine model of ovarian carcinoma, suppresses their ability to express CD40 and stimulate antigen-specific responses in response to PAMPs and, in particular, to polyinosinic acid:poly-CMP (polyI:C) with the up-regulated SOCS3 transcript and protein levels. The ectopic expression of SOCS3 in both the macrophage cell line RAW264.7 and BMDCs decreased signaling in response to both polyI:C and IFNA. Further, knockdown of SOCS3 transcripts significantly enhanced the responses of RAW264.7 and BMDCs to both polyI:C and IFNA. Immunoprecipitation and pull-down studies show that SOCS3 binds to the IFNA receptor tyrosine kinase 2 (TYK2). Because polyI:C triggers autocrine IFNA signaling, binding of SOCS3 to TYK2 may thereby suppress the activation of BMDCs by polyI:C and IFNA. Thus, elevated levels of SOCS3 in tumor-associated DCs may potentially resist the signals induced by Toll-like receptor 3 ligands and type I IFN to decrease DC activation via binding with IFNA receptor TYK2.
Background: Histone lysine demethylase 4B (KDM4B) has been implicated in various pathological processes and human diseases. Glucose metabolism is the main pattern of energy supply in cells and its dysfunction is closely related to tumorigenesis. Recent study shows that KDM4B protects against obesity and metabolic dysfunction. We realized the significant role of KDM4B in metabolism. However, the role of KDM4B in glucose metabolism remains unclear. Here, we sought to delineate the role and mechanism of KDM4B in glucose metabolism in colorectal cancer (CRC). Methods: We first analyzed the role of KDM4B in glucose uptake and CRC growth. We then investigated the consequences of KDM4B inhibition on the expression of GLUT1 and AKT signaling, also explored the underlying mechanism. Finally, we detected the mechanism in vivo and assessed the potential correlation between the expression of KDM4B and CRC prognosis. Results: We found that KDM4B promoted glucose uptake and ATP production by regulating the expression of GLUT1 via the AKT signaling pathway. KDM4B could interact with TRAF6 and promote TRAF6-mediated ubiquitination of AKT for AKT activation. Furthermore, we demonstrated that KDM4B was overexpressed in CRC specimens and high level of KDM4B was associated with a poor survival rate in CRC patients. Conclusions: These findings reveal that KDM4B plays an important role in promoting CRC progression by enhancing glucose metabolism.
Myocardin is a transcriptional co-activator of serum response factor (SRF) and can be degraded through ubiquitin-proteasome system. Our preliminary studies unexpectedly revealed that accumulation of myocardin in response to proteasome inhibition by MG132 or lactacystin resulted in decrease of transcriptional activity of myocardin as indicated by reduced expression of SMC contractile marker genes (SM α-actin, SM22, and calponin) and muscle-enriched microRNAs (miR-143/145 and miR-1/133a), and reduced contractility of human vascular smooth muscle cells (SMCs) embedded in collagen gel lattices, suggesting that myocardin degradation is required for its transcriptional activity. Further studies using chromatin immunoprecipitation assay revealed that proteasome inhibition, although increased the occupancy of myocardin and SRF on the promoter of SM α-actin gene, abolished myocardin-dependent recruitment of RNA polymerase II. We further examined the degradation of myocardin in epithelioid and spindle-shaped SMCs and revealed that myocardin in more differentiated spindle-shaped SMCs was more quickly degraded and had shorter half-life than in epithelioid SMCs. In neointimal lesions, we found that stabilization of myocardin protein was companied by downregulation of transcripts of ubiquitin and proteasome subunits, further illustrating the mechanism underlying reduction of myocardin transcriptional activity. In summary, our results have suggested that proteasomal degradation of myocardin is required for its transcriptional activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.