A decrease in surface albedo over ice‐covered ocean leads to global warming and Arctic‐amplified warming. Numerical results indicate seasonal variation in Arctic amplification (AA) is a result of local forcing and feedbacks in the Arctic. A decrease in surface albedo leads to a positive feedback, which dominates the local forcing and feedback mechanism. Ocean heat storage in the subsurface acts as a heat forcing to delay the influence of surface albedo feedback. In summer (autumn), heat storage increases (discharges) and contributes to a negative (positive) heat forcing, which decreases (increases) the positive local forcing and feedback and triggers the occurrence of the minimum (maximum) AA. In addition, increased CO2 forcing largely decreases the outgoing longwave radiation at the surface and increases surface temperatures, especially at low latitudes and in the Arctic winters, which decreases the AA magnitude and seasonal variation, although the AA remains nearly the same during winter.
What determines the Atlantic meridional overturning circulation (AMOC) is one of the classic questions that have weighted on oceanographers and climatologists for decades. The AMOC is one of the key elements of the global climate system. It plays a critical role in maintaining global ocean heat and freshwater balances. It is commonly recognized that the AMOC is sustained by the North Atlantic deep-water (NADW) formation (e.g.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.