Robust and high-precision quantum control is extremely important but challenging for the functionization of scalable quantum computation. In this paper, we show that this hard problem can be translated to a supervised machine learning task by treating the time-ordered quantum evolution as a layer-ordered neural network (NN). The seeking of robust quantum controls is then equivalent to training a highly generalizable NN, to which numerous tuning skills matured in machine learning can be transferred. This opens up a door through which a family of robust control algorithms can be developed. We exemplify such potential by introducing the commonly used trick of batch-based optimization, and the resulting stochastic b-GRAPE algorithm is numerically shown to be able to remarkably enhance the control robustness while maintaining high fidelity.
High-precision manipulation of multi-qubit quantum systems requires strictly clocked and synchronized multi-channel control signals. However, practical Arbitrary Waveform Generators (AWGs) always suffer from random signal jitters and channel latencies that induces non-ignorable state or gate operation errors. In this paper, we analyze the average gate error caused by clock noises, from which an estimation formula is derived for quantifying the control robustness against clock noises. This measure is then employed for finding robust controls via a homotopic optimization algorithm. We also introduce our recently proposed stochastic optimization algorithm, b-GRAPE, for training robust controls via randomly generated clock noise samples. Numerical simulations on a two-qubit example demonstrate that both algorithms can greatly improve the control robustness against clock noises. The homotopic algorithm converges much faster than the b-GRAPE algorithm, but the latter can achieve more robust controls against clock noises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.