Mobile medical care is a hot issue in current medical research. Due to the inconvenience of going to hospital for fetal heart monitoring and the limited medical resources, real-time monitoring of fetal health on portable devices has become an urgent need for pregnant women, which helps to protect the health of the fetus in a more comprehensive manner and reduce the workload of doctors. For the feature acquisition of the fetal heart rate (FHR) signal, the traditional feature-based classification methods need to manually read the morphological features from the FHR curve, which is time-consuming and costly and has a certain degree of calibration bias. This paper proposes a classification method of the FHR signal based on neural networks, which can avoid manual feature acquisition and reduce the error caused by human factors. The algorithm will directly learn from the FHR data and truly realize the real-time diagnosis of FHR data. The convolution neural network classification method named “MKNet” and recurrent neural network named “MKRNN” are designed. The main contents of this paper include the preprocessing of the FHR signal, the training of the classification model, and the experiment evaluation. Finally, MKNet is proved to be the best algorithm for real-time FHR signal classification.
The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.