In higher plants, seed storage proteins (SSPs) are frequently expressed from complex gene families, and allelic variation of SSP genes often affects the quality traits of crops. In common wheat, the Glu-D1 locus, encoding 1Dx and 1Dy SSPs, has multiple alleles. The Glu-D1d allele frequently confers superior end-use qualities to commercial wheat varieties. Here, we studied the haplotype structure of Glu-D1 genomic region and the origin of Glu-D1d. Using seven diagnostic DNA markers, 12 Glu-D1 haplotypes were detected among common wheat, European spelt wheat (T. spelta, a primitive hexaploid relative of common wheat), and Aegilops tauschii (the D genome donor of hexaploid wheat). By comparatively analyzing Glu-D1 haplotypes and their associated 1Dx and 1Dy genes, we deduce that the haplotype carrying Glu-D1d was likely differentiated in the ancestral hexaploid wheat around 10,000 years ago, and was subsequently transmitted to domesticated common wheat and T. spelta. A group of relatively ancient Glu-D1 haplotypes was discovered in Ae. tauschii, which may serve for the evolution of other haplotypes. Moreover, a number of new Glu-D1d variants were found in T. spelta. The main steps in Glu-D1d differentiation are proposed. The implications of our work for enhancing the utility of Glu-D1d in wheat quality improvement and studying the SSP alleles in other crop species are discussed.
Diploid Thinopyrum elongatum (EE, 2n = 2x = 14) and related polyploid species constitute an important gene pool for improving Triticeae grain and forage crops. However, the genomic and molecular marker resources are generally poor for these species. To aid the genetic, molecular, breeding and ecological studies involving Thinopyrum species, we developed a strategy for mining and validating E-genome-specific SNPs using Th. elongatum and common wheat (Triticum aestivum, AABBDD, 2n = 6x = 42) as experimental materials. By comparing the transcriptomes between Chinese Spring (CS, a common wheat variety) and the CS-Th. elongatum octoploid, 35,193 candidate SNPs between E genome genes and their common wheat orthologs were computed. Through comparative genomic analysis, these SNPs were putatively assigned to the seven individual E genome chromosomes. Among 420 randomly selected SNPs, 373 could be validated. Thus, approximately 89% of the mined SNPs may be authentic with respect to their polymorphism and chromosomal location. Using 14 such SNPs as molecular markers, complex E genome introgressions were reliably identified in 78 common wheat-Th. elongatum hybrids, and the structural feature of a novel recombinant chromosome formed by 6E and 7E was revealed. Finally, based on testing 33 SNPs assigned to chromosome 3E in multiple genotypes of Th. elongatum, Pseudoroegneria stipifolia (carrying the St genome related to E) and common wheat, we suggest that some of the SNP markers may also be applicable for genetic studies within and among the Thinopyrum species (populations) carrying E and/or St genomes in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.