An optical fiber temperature and torsion sensor has been proposed by employing the Lyot-Sagnac interferometer, which was composed by inserting two sections of high-birefringence (HiBi) fiber into the Sagnac loop. The two inserted sections of HiBi fiber have different functions; while one section acts as the temperature sensitive region, the other can be used as reference fiber. The temperature and twist sensor based on the proposed interferometer structure have been experimentally demonstrated. The experimental results show that the envelope of the output spectrum will shift with the temperature evolution. The temperature sensitivity is calculated to be −17.99 nm/°C, which is enlarged over 12 times compared to that of the single Sagnac interferometer. Additionally, the fringe visibility of the spectrum will change due to the fiber twist, and the test results reveal that the fringe visibility and twist angle perfectly conform to a Sine relationship over a 360° twist angle. Consequently, simultaneous torsion and temperature measurement could be realized by detecting the envelope shift and fringe visibility of the spectrum.
A novel demodulation method for Sagnac loop interferometer based sensor has been proposed and demonstrated, by unwrapping the phase changes with birefringence interrogation. A temperature sensor based on Sagnac loop interferometer has been used to verify the feasibility of the proposed method. Several tests with 40 °C temperature range have been accomplished with a great linearity of 0.9996 in full range. The proposed scheme is universal for all Sagnac loop interferometer based sensors and it has unlimited linear measurable range which overwhelming the conventional demodulation method with peak/dip tracing. Furthermore, the influence of the wavelength sampling interval and wavelength span on the demodulation error has been discussed in this work. The proposed interrogation method has a great significance for Sagnac loop interferometer sensor and it might greatly enhance the availability of this type of sensors in practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.