Combining qualitative analysis and numerical technique, the present work revisits a four-dimensional circuit system in [Ma et al., 2016] and mainly reveals some of its rich dynamics not yet investigated: pitchfork bifurcation, Hopf bifurcation, singularly degenerate heteroclinic cycle, globally exponentially attractive set, invariant algebraic surface and heteroclinic orbit. The main contributions of the work are summarized as follows: Firstly, it is proved that there exists a globally exponentially attractive set with three different exponential rates by constructing a suitable Lyapunov function. Secondly, the existence of a pair of heteroclinic orbits is also proved by utilizing two different Lyapunov functions. Finally, numerical simulations not only are consistent with theoretical results, but also illustrate potential existence of hidden attractors in its Lorenz-type subsystem, singularly degenerate heteroclinic cycles with distinct geometrical structures and nearby hyperchaotic attractors in the case of small [Formula: see text], i.e. hyperchaotic attractors and nearby pseudo singularly degenerate heteroclinic cycles, i.e. a short-duration transient of singularly degenerate heteroclinic cycles approaching infinity, or the true ones consisting of normally hyperbolic saddle-foci (or saddle-nodes) and stable node-foci, giving some kind of forming mechanism of hyperchaos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.