Objective: The aim of this study was to develop a nomogram to predict the risk of premature rupture of membrane (PROM) in pregnant women with vulvovaginal candidiasis (VVC).Patients and methods: We developed a prediction model based on a training dataset of 417 gravidas with VVC, the data were collected from January 2013 to December 2020. The least absolute shrinkage and selection operator regression model was used to optimize feature selection for the model. Multivariable logistic regression analysis was applied to build a prediction model incorporating the feature selected in the least absolute shrinkage and selection operator regression model. Discrimination, calibration, and clinical usefulness of the prediction model were assessed using the C-index, calibration plot, and decision curve analysis. Internal validation was assessed using bootstrapping validation.Results: Predictors contained in the prediction nomogram included age, regular perinatal visits, history of VVC before pregnancy, symptoms with VVC, cured of VVC during pregnancy, and bacterial vaginitis. The model displayed discrimination with a C-index of 0.684 (95% confidence interval: 0.631–0.737). Decision curve analysis showed that the PROM nomogram was clinically useful when intervention was decided at a PROM possibility threshold of 13%.Conclusion: This novel PROM nomogram incorporating age, regular perinatal visits, history of VVC before pregnancy, symptoms with VVC, cured of VVC during pregnancy, and bacterial vaginitis could be conveniently used to facilitate PROM risk prediction in gravidas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.