The miniaturization and high integration of electronic products have higher and higher requirements for welding of internal components of electronic products. A welding quality detection method has always been one of the important research contents in the industry, among which, the research on solder joint defect detection of a connector has gradually attracted people’s attention with the development of image detection algorithm. The traditional solder joint detection method of connector adopts manual detection or automatic detection methods, which is inefficient and not safe enough. With the development of deep learning, the application of a deep convolutional neural network to target detection has become a research hotspot. In this paper, a data set of connector solder joint samples was made and the number of image samples was expanded to more than 3 times of the original by using data augmentation. Clustering generates anchor boxes and transfer learning with ResNet-101 were fused, so an improved faster region-based convolutional neural networks (Faster RCNN) algorithm was proposed. The experiment verified that the improved algorithm proposed in this paper had a great improvement in all aspects compared with the original algorithm. The average detection accuracy of this method can reach 94%, and the detection rate of some defects can even reach 100%, which can completely meet the industrial requirements.
The intelligent detection of objects in remote sensing images has gradually become a research hotspot for experts from various countries, among which optical remote sensing images are considered to be the most important because of the rich feature information, such as the shape, texture and color, that they contain. Optical remote sensing image target detection is an important method for accomplishing tasks, such as land use, urban planning, traffic guidance, military monitoring and maritime rescue. In this paper, a multi stages feature pyramid network, namely the Multi-stage Feature Enhancement Pyramid Network (Multi-stage FEPN), is proposed, which can effectively solve the problems of blurring of small-scale targets and large scale variations of targets detected in optical remote sensing images. The Content-Aware Feature Up-Sampling (CAFUS) and Feature Enhancement Module (FEM) used in the network can perfectly solve the problem of fusion of adjacent-stages feature maps. Compared with several representative frameworks, the Multi-stage FEPN performs better in a range of common detection metrics, such as model accuracy and detection accuracy. The mAP reaches 0.9124, and the top-1 detection accuracy reaches 0.921 on NWPU VHR-10. The results demonstrate that Multi-stage FEPN provides a new solution for the intelligent detection of targets in optical remote sensing images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.