Rechargeable mild aqueous zinc batteries have recently attracted tremendous interest for large‐scale grid storage due to their potentially highest energy density and safety, and lowest cost among available aqueous battery technologies. Herein, a variety of cathode materials, zinc anode structures, and electrolytes are briefly reviewed. A multi‐type of charge carriers such as Zn2+, H+, and anions can be reversibly stored in cathodes in rechargeable mild aqueous zinc batteries. The charge storage behavior in cathodes and strategies to address the reversibility and dendrite growth of zinc anodes are comprehensively summarized. Solutions to the remaining challenges such as long‐term stability and economy of cathodes and zinc anodes are discussed. This review also includes an analysis of mild aqueous zinc battery chemistry with reported cathode materials and anode materials. A perspective for the practical development of rechargeable mild aqueous zinc batteries regarding cathode design, zinc anode utilization, and cell configuration is also included to accelerate the commercialization of zinc batteries. In the future, rechargeable mild aqueous zinc batteries would be a visible energy storage solution for grid storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.