Growth differentiation factor 15 (GDF15), a member of the TGF-β superfamily, is a prognostic biomarker of cervical cancer. In addition, GDF15 has been reported to enhance the migration of colorectal cancer cells and liver cancer stem-like cells. However, the mechanism by which GDF15 promotes cervical cancer cell migration is not completely understood. Here, we report that GDF15 expression is enhanced in cervical cancer tissues as well as in cultured cervical cancer cells. ShGDF15 transfection markedly inhibited expression of Vimentin, N-cadherin, and Snail1, and resulted in upregulation of E-cadherin expression in HT-3 and HeLa cells. Moreover, knockdown of GDF15 suppressed wound healing rate and reduced the number of invasive cells. Furthermore, knockdown of GDF15 significantly suppressed the expression of p-Smad2 and p-Smad3. The addition of TGF-β1 partially abolished the inhibitory effects of GDF15 knockdown on the migration and invasion of cervical cancer cells. In summary, we report here that GDF15 knockdown inhibits migration and invasion of cervical cancer cells in vitro through TGF-β/Smad2/3/Snail1 pathway.
Purpose: To investigate the effect of propofol on the biological behavior of ovarian cancer SKOV3 cells, and the mechanism of action involved. Methods: SKOV3 cells cultured in vitro were randomly divided into control group, fat emulsion group, low-dose propofol group (LDPG, 25 μmol/L), medium-dose propofol group (MDPG) (50 μmol/L) and high-dose propofol group (HDPG) (100 μmol/L). Apoptosis was determined by flow cytometry, while Transwell assay was used to measure the migration and invasion abilities of the cells. The protein levels of ERK1/2, MMP-2, MMP-9 were assayed with Western blotting. Moreover, the cells were transfected with siERK, and the regulatory effect of propofol on ERK1/2-MMP-2/9 signaling pathway was determined. Results: Apoptosis in HDPG was significantly reduced, relative to MDPG, while migration and invasion were enhanced, relative to MDPG (p < 0.05). Moreover, MMP-2, ERK1/2, and MMP-9 proteins were significantly higher in MDPG and HDPG than in control, fat emulsion and LDPGs (p < 0.05), and were upregulated in HDPGs, relative to MDPG (p < 0.05). In contrast, propofol did not up-regulate these proteins in siRNA-treated cells. Conclusion: Propofol enhances the migration, proliferation, and invasive ability SKOV3 cells, and upregulates the expressions of MMP-2, ERK1/2, and MMP-9 in these cells, via a mechanism related to the activation of ERK1/2-MMP-2/9 signaling route. These properties provide novel leads for the development of new drugs for ovarian cancer Keywords: Propofol, ERK1/2-MMP-2/9 signal route, Ovarian cancer, Biological behavior
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.