An automatically power-stabilized (with power fluctuation <0.155 dB), narrow-linewidth (0.0171 nm), wavelengthtunable (10.69 nm) erbium-doped fiber laser has been proposed by cascading two fiber Mach-Zehnder interferometers (MZI) without using any temperature controlling device. One of the MZIs (here called the 1st MZI) is composed of two 3 dB couplers to form interference patterns while the other MZI (here termed the 2nd MZI) is constructed with a tapered seven-core fiber (SCF) and based on the principle of supermode interference. For the two MZIs, the free spectral range (FSR), the passband bandwidth and the extinction ratio (ER) at 1560 nm are 0.37 nm, 0.19 nm, 16.6 dB and 13.93 nm, 7.93 nm, 10.1 dB, respectively. Due to the major difference between the two FSR values, the 1st MZI and the 2nd MZI respectively play a role in controlling the laser linewidth and suppressing the homogeneous broadening effect to reach to a satisfactory level of power stability. The 2nd MZI is also used to fine tune the laser wavelength by applying strain to the tapered SCF (TSCF) over the spectral range of 1570.22-1559.33 nm, with an incremental step of 0.37 nm being used. The side-mode suppression ratio (SMSR) of the tunable fiber laser can be up to 45 dB. By appropriately adjusting the polarization controller, dual wavelength lasing can also be achieved.
The dependence of the output pulse characteristics of a Mamyshev fiber oscillator on cavity parameters is investigated in detail. We analyze the change in pulse spectrum bandwidth, pulse duration, dechirped pulse duration and chirp with the change in fiber group velocity dispersion, fiber nonlinearity, gain, and filters by putting forward a numerical model. In particular, as one of the most important components, the effect of filters bandwidth and the central wavelength interval between them is discussed. The passive fibers are classified into two kinds according to their locations in the cavity, which are the one before the gain fiber and the one after the gain fiber. Numerical simulation results show that a wide spectrum can be obtained by increasing the nonlinearity of the second passive fiber, while the change in nonlinearity of the first passive fiber has a weak effect on spectrum broadening. A wide spectrum could also be obtained by increasing the nonlinearity or the small-signal gain coefficient of the gain fiber. A Yb-doped Mamyshev fiber oscillator is demonstrated. The results show the increase in pump power, which agrees reasonably well with the numerical simulation results.
We demonstrate a real-time microanalysis approach to the evaporation rate of a (sub)picoliter liquid drop, measured over a 7.85-0.38 picoliter volume, using an off-axis fiber interferometer and achieving the best displacement resolution of 24 nm.
Based on the coupled Ginzburg-Landau equations and Jones matrices of the waveplates considered, a numerical model of an all-normal-dispersion fiber laser mode-locked by nonlinear polarization rotation has been proposed. The operating characteristics of the fiber laser discussed were studied numerically. It has been found that the proposed all-normal-dispersion mode-locked fiber laser (AND-MLFL) could deliver dissipative solitons (DSs) with a M-shaped and U-shaped spectrum, the splitting pulse with a divided spectrum and the amplifier similaritons. The evolution of the intra-cavity pulse and spectrum has been calculated under different regimes and the effects of group velocity dispersion (GVD) and nonlinearity are analyzed. When the fiber laser delivers DSs or causes pulse splitting, nonlinear effects dominate the pulse evolution. With the increase of the accumulated nonlinear phase shift, the operation states change from DS with a M-shaped spectrum to a U-shaped spectrum, and then to the splitting pulse. In the case of amplifier similaritons, both the GVD and nonlinearity play important roles in pulse evolution. The effect of nonlinear polarization rotation and filtering on the pulse reshaping has been analyzed. When the fiber laser delivers DSs with a M-shaped spectrum, the filter has a very weak effect on the pulse and on spectral reshaping. However, when the fiber laser operates in the amplifier similariton state, the filter plays a key role in pulse and spectral reshaping, whereas the nonlinear polarization rotation become less dominant. The dependence of the operational states on the filter bandwidth, fiber length, small signal gain coefficient and orientation of waveplates has also been calculated. A Yb-doped doubled-cladding fiber laser, mode-locked by nonlinear polarization rotation, has also been demonstrated and all of the four pulse regimes are obtained experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.