Circular RNA (circRNA) and long non-coding RNA (lncRNA) are known to participate in adipogenesis and myogenic differentiation, but their impact on porcine muscle traits is not well understood. We compared their expressional profiles in the longissimus dorsi muscle of Chinese Huainan pigs (HN, the fat type) and Western commercial Duroc×(Landrace×Yorkshire) (DLY, the thin type) pigs, and 854 mRNAs, 233 lncRNAs, and 66 circRNAs (p < 0.05 and |log2FoldChange|>1) were found to be differentially expressed. The differentially expressed mRNA and circRNA parental genes were enriched in the Wnt signaling pathway (adipogenesis), the transition between fast and slow fibers (myogenic differentiation), and alanine, aspartate and glutamate metabolism (pork flavor). The potential lncRNAs/circRNAs-miRNAs-mRNAs regulatory networks shared MYOD1, PPARD, miR-423-5p and miR-874, which were associated with skeletal muscle muscular proliferation, differentiation/regeneration and adipogenesis. Taken together, these differentially expressed non-coding RNAs may be involved in the molecular basis of muscle traits, acting as the competing endogenous RNA (ceRNA) for miRNAs.
Endometriosis, a common, benign, estrogen-dependent disease affecting 3-10% of women of reproductive age, is characterized by the ectopic growth of endometrial tissue that is found primarily in the peritoneum, ovaries and rectovaginal septum. Recently, endometriosis has been alternatively described as an immune disease, a genetic disease and a disease caused by exposure to environmental factors, in addition to its usual description as a hormonal disease. In addition, accumulating evidence suggests that various epigenetic aberrations play definite roles in the pathogenesis of endometriosis. Epigenetic alterations reported to date in endometriosis include the genomic DNA methylation of progesterone receptor-B, E-cadherin, homeobox A10, estrogen receptor-β, steroidogenic factor-1 and aromatase. Aberrant expression of DNA methyltransferases, which attach a methyl group to the 5-carbon position of cytosine bases in the CpG island of the promoter region and silence the corresponding gene expression, has also been demonstrated in endometriosis. This review summarizes the recent studies on the aberrant DNA methylation status and aberrant expression of DNA methyltransferases, which regulate DNA methylation, in endometriosis. We also discuss the recent information on the diagnostic and therapeutic implications of epigenetic alterations occurring in endometriosis.
The present findings demonstrated that aberrant histone modifications are present in endometriosis and that HDACIs reactivated epigenetically silenced genes, resulting in the suppression of cell proliferation, induction of cell cycle arrest and apoptosis of ECSCs. HDACIs are therefore promising agents for the treatment of endometriosis.
BackgroundAuxin and auxin signaling are involved in a series of developmental processes in plants. Auxin Response Factors (ARFs) is reported to modulate the expression of target genes by binding to auxin response elements (AuxREs) and influence the transcriptional activation of down-stream target genes. However, how ARF genes function in flower development and fruit ripening of papaya (Carica papaya L.) is largely unknown. In this study, a comprehensive characterization and expression profiling analysis of 11 C. papaya ARF (CpARF) genes was performed using the newly updated papaya reference genome data.ResultsWe analyzed CpARF expression patterns at different developmental stages. CpARF1, CpARF2, CpARF4, CpARF5, and CpARF10 showed the highest expression at the initial stage of flower development, but decreased during the following developmental stages. CpARF6 expression increased during the developmental process and reached its peak level at the final stage of flower development. The expression of CpARF1 increased significantly during the fruit ripening stages. Many AuxREs were included in the promoters of two ethylene signaling genes (CpETR1 and CpETR2) and three ethylene-synthesis-related genes (CpACS1, CpACS2, and CpACO1), suggesting that CpARFs might be involved in fruit ripening via the regulation of ethylene signaling.ConclusionsOur study provided comprehensive information on ARF family in papaya, including gene structures, chromosome locations, phylogenetic relationships, and expression patterns. The involvement of CpARF gene expression changes in flower and fruit development allowed us to understand the role of ARF-mediated auxin signaling in the maturation of reproductive organs in papaya.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2182-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.