Objectives:To investigate whether there is a difference in carbohydrate antigen 19-9 (CA19-9), carcinoembryonic antigen (CEA), carbohydrate antigen 72-4 (CA72-4), and neuron-specific enolase (NSE) between diabetic and non-diabetic patients.Methods:A retrospective analysis was performed in 268 type 2 diabetic patients and 95 non-diabetic ones, and their serum levels of CA19-9, CEA, CA72-4, and NSE were compared in our endocrine ward at the Tianjin Fourth Central Hospital, Tianjin, China during the period from January to June 2015. The diabetic patients were divided into 4 groups based on glycosylated hemoglobin (HbA1c) levels to investigate the relationship between levels of tumor markers and glucose status.Results:Diabetic patients had higher levels of tumor markers than non-diabetic subjects (CA19-9: 13.0 versus 7.25U/mL, p=0.000; CEA: 2.55 versus 2.25 ng/mL, p=0.012; CA72-4: 1.95 versus 1.50U/mL, p=0.001; NSE: 11.64 versus 10.22ng/mL, p=0.000). CA19-9 levels increased in a stepwise manner with poor diabetes status. CEA levels were increased in patients with HbA1c ≥9% and CA72-4 elevation was predominant in patients with poor glycemic control (HbA1c ≥11%). NSE levels were not associated with metabolic parameters.Conclusion:Serum levels of CA19-9, CEA, CA72-4, and NSE were elevated in type 2 diabetes; however, only CA19-9, CEA, and CA72-4 levels were associated with hyperglycemia.
BackgroundRaised serum uric acid (SUA) level is commonly observed in patients with type 2 diabetes mellitus (T2DM) and is associated with increased morbidity and mortality. Sodium-glucose cotransporter 2 inhibitor, a novel oral diabetic drug, might exert a potential hypouricemic effect. We evaluated the effects of dapagliflozin on SUA levels in hospitalized T2DM patients with inadequate glycemic control.MethodsIn this randomized controlled trial, 59 T2DM hospitalized patients with inadequate glycemic control were assigned to the dapagliflozin 10 mg group (n=29) or the control group (n=30). The primary outcome was changes in SUA levels from the baseline to good glycemic control. Additional outcomes included correlations between baseline SUA levels, urinary parameters, and the changes in SUA levels. This trial is registered in the Chinese Clinical Trial Registry (number ChiCTR1800015830).ResultsCompared to baseline level, SUA levels had significantly decreased in both groups (P<0.001 for the dapagliflozin group and P=0.013 for the control group). Mean changes from baseline in SUA levels for dapagliflozin vs the control group were 68.03 vs 25.90 μmol/L (P=0.0406). Adjusted mean SUA levels were lower in the dapagliflozin group (273.28 vs 307.57 μmol/L; P=0.0089). In T2DM patients treated with dapagliflozin, the decrease in SUA levels was positively correlated with baseline SUA levels (P<0.0001) but not correlated with changes in 24-hour urine volume, 24-hour urine glucose, or 24-hour urinary uric acid.ConclusionDapagliflozin could improve glycemic control and lower SUA levels in hospitalized patients with uncontrolled T2DM. Longer-time trials are required to further demonstrate the hypouricemic effect of dapagliflozin and explore the potential underlying mechanisms.
BackgroundImpaired glucose tolerance (IGT) is an important prediabetic stage characterized by elevated concentrations of glucose and insulin in the blood. The pathological hyperglycemia and hyperinsulinemia in IGT may regulate the expression of microRNA-21 (miR-21) and affect the downstream insulin signaling pathways, leading to endothelial cell dysfunction and early renal damage.MethodsThe individual and combined effects of insulin and glucose were investigated using human glomerular endothelial cells (HGECs). The expression levels of miR-21, and PTEN/AKT/eNOS and MAPK/ET-1 pathway proteins in the treated cells were measured. The levels of nitric oxide (NO) and endothelin-1 (ET-1) secreted by the cells were also measured. The role of miR-21 in mediating the regulatory effects of insulin and glucose was assessed by overexpression/inhibition of this miRNA using mimics/inhibitor.ResultsHigh (>16.7 mmol/L) concentration of glucose upregulated the expression of miR-21, leading to the activation and inhibition of the PTEN/AKT/eNOS and MAPK/ET-1 pathways, and upregulation of NO and downregulation of ET-1 secretion, respectively. High (>25 ng/mL) concentration of insulin downregulated the expression of miR-21, and lead to the activation of the MAPK/ET-1 and inhibition of the PTEN/AKT/eNOS pathway, thereby upregulating the expression of ET-1 and downregulating the secretion of NO. MiR-21 was observed to play a key role by directly controlling the activation of the insulin signaling pathways when the cells were cotreated with different concentrations of insulin and glucose. The expression of miR-21 was found to be dependent on the relative concentration of insulin and glucose. Under simulated conditions of the IGT stage (8.3 mmol/L glucose + 50 ng/mL insulin), the inhibitory effect of high insulin concentration on miR-21 expression in the cells attenuated the activation by high glucose concentration, resulting in the downregulation of miR-21, upregulation of ET-1 and downregulation of NO secretion.ConclusionTaken together, these results indicate that high insulin and glucose concentrations regulate the secretory function of glomerular endothelial cells in opposite ways by regulating the expression of miRNA-21. Pathological concentrations of insulin and glucose in the IGT stage may lead to a decrease in miR-21 expression, thereby disordering the secretion of vasoactive factors, resulting in renal tubule ischemia.
AimTo investigate the related factors of diabetic retinopathy (DR) and explore the correlation between smoking and DR in patients with newly diagnosed type 2 diabetes mellitus (T2DM).DesignA single-centre cross-sectional study.SettingTianjin 4th Central Hospital.ParticipantsPatients with newly diagnosed T2DM who visited the outpatient department of the hospital from December 2018 to April 2019.MethodsA total of 947 patients were enrolled in the study. They were divided into two groups according to whether they were diagnosed with DR (diabetic retinopathy group, DR group; non-diabetic retinopathy group, NDR group). The smoking index (SI) was calculated to assess smoking status. Factors such as sex, age, hypertension, T2DM diagnosed age, family history of diabetes, drinking history, haemoglobin A1c (HbA1c), body mass index (BMI) and smoking status were compared between the two groups. Logistic regression was used to analyse the relationship between DR and the above factors.ResultsThere was no statistically significant difference between the two groups in sex, age, hypertension, DM diagnosed age, family history of diabetes, drinking history and HbA1c. BMI was significantly higher in DR patients (27.7±4.2 vs 26.7±4.4, p=0.004). Smoking status was also different between the two groups (χ2=6.350, p=0.042). BMI was shown to be a related factor for DR in patients with newly diagnosed diabetes (OR=0.592, p=0.004). When BMI was ≥28 kg/m2, heavy smoking was significantly associated with DR (OR=2.219, p=0.049), and there was a negative correlation between DR and the age of diagnosis of diabetes ≥60 years (OR=0.289, p=0.009).ConclusionsHeavy smoking was an important related factor for DR in patients with newly diagnosed diabetes mellitus when BMI was ≥28 kg/m2. Delaying the age of diabetes might prevent the occurrence of DR. To elucidate the correlation, long-term cohort studies with large samples are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.