Theory has established the importance of geometric phase (GP) effects in the adiabatic dynamics of molecular systems with a conical intersection connecting the ground- and excited-state potential energy surfaces, but direct observation of their manifestation in chemical reactions remains a major challenge. Here, we report a high-resolution crossed molecular beams study of the H + HD → H2+ D reaction at a collision energy slightly above the conical intersection. Velocity map ion imaging revealed fast angular oscillations in product quantum state–resolved differential cross sections in the forward scattering direction for H2products at specific rovibrational levels. The experimental results agree with adiabatic quantum dynamical calculations only when the GP effect is included.
Understanding quantum interferences is essential to the study of chemical reaction dynamics. Here, we provide an interesting case of quantum interference between two topologically distinct pathways in the H + HD → H2 + D reaction in the collision energy range between 1.94 and 2.21 eV, manifested as oscillations in the energy dependence of the differential cross section for the H2 (v′ = 2, j′ = 3) product (where v′ is the vibrational quantum number and j′ is the rotational quantum number) in the backward scattering direction. The notable oscillation patterns observed are attributed to the strong quantum interference between the direct abstraction pathway and an unusual roaming insertion pathway. More interestingly, the observed interference pattern also provides a sensitive probe of the geometric phase effect at an energy far below the conical intersection in this reaction, which resembles the Aharonov–Bohm effect in physics, clearly demonstrating the quantum nature of chemical reactivity.
A single set of coordinates, which is optimal for both asymptotic product and reactant, is difficult to find in a state-to-state reactive scattering calculation using the quantum wave packet method. An interaction-asymptotic region decomposition (IARD) method was proposed in this work to solve this “coordinate problem.” In the method, the interaction region and asymptotic regions are applied with the local optimal coordinate system, i.e., hyperspherical and corresponding Jacobi coordinates. The IARD method is capable of efficiently and accurately accomplishing a calculation with a grid box for the Jacobi coordinate R extending several hundred bohrs for both reactant and product arrangements. We demonstrate the effectiveness of the IARD method with the reaction of H + HD, which is the simplest direct reaction, and F + HD, which is a typical reaction involving resonances with products of extremely slow translational energy and requires extremely long absorbing potential in all channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.