Grassland biomass is essential for maintaining grassland ecosystems. Moreover, biomass is an important characteristic of grassland. In this study, we combined field sampling with remote sensing data and calculated five vegetation indices (VIs). Using this combined information, we quantified a remote sensing estimation model and estimated biomass in a temperate grassland of northern China. We also explored the dynamic spatio-temporal variation of biomass from 2006 to 2012. Our results indicated that all VIs investigated in the study were strongly correlated with biomass (α < 0.01). The precision of the model for estimating biomass based on ground data and remote sensing was greater than 73%. Additionally, the results of our analysis indicated that the annual average biomass was 11.86 million tons and that the average yield was 604.5 kg/ha. The distribution of biomass exhibited substantial spatial heterogeneity, and the biomass decreased from the eastern portion of the study area to the western portion. The highest coefficient of variation was found for the desert steppe, followed by the typical steppe and the meadow steppe.
Deep convolution neural networks demonstrate impressive results in the super-resolution domain. A series of studies concentrate on improving peak signal noise ratio (PSNR) by using much deeper layers, which are not friendly to constrained resources. Pursuing a trade-off between the restoration capacity and the simplicity of models is still non-trivial. Recent contributions are struggling to manually maximize this balance, while our work achieves the same goal automatically with neural architecture search. Specifically, we handle superresolution with a multi-objective approach. We also propose an elastic search tactic at both micro and macro level, based on a hybrid controller that profits from evolutionary computation and reinforcement learning. Quantitative experiments help us to draw a conclusion that our generated models dominate most of the state-of-the-art methods with respect to the individual FLOPS.
The precise and rapid estimation of grassland biomass is an important scientific issue in grassland ecosystem research. In this study, based on a field survey of 1205 sites together with biomass data of the Xilingol grassland for the years 2005-2012 and the -accumulated‖ MODIS productivity starting from the beginning of growing season, we built regression models to estimate the aboveground biomass of the Xilingol grassland during the growing season, then further analyzed the overall condition of the grassland and the spatial and temporal distribution of the aboveground biomass. The results are summarized as follows: (1) The unitary linear model based on the field survey data and -accumulated‖ MODIS productivity data is the optimum model for estimating the aboveground biomass of the Xilingol grassland during the growing period, with the model accuracy reaching 69%; (2) The average aboveground biomass in the Xilingol grassland for the years 2005-2012 was estimated to be 14.35 Tg, and the average aboveground biomass density was estimated to be 71.32 g•m −2 ; (3) The overall variation in the aboveground biomass showed a decreasing trend from the eastern meadow grassland to the western
OPEN ACCESSRemote Sens. 2014, 6 5369 desert grassland; (4) There were obvious fluctuations in the aboveground biomass of the Xilingol grassland for the years 2005-2012, ranging from 10.56-17.54 Tg. Additionally, several differences in the interannual changes in aboveground biomass were observed among the various types of grassland. Large variations occurred in the temperate meadow-steppe and the typical grassland; whereas there was little change in the temperate desert-steppe and temperate steppe-desert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.