Recent advances in the study of the CRISPR/Cas9 system have provided a precise and versatile approach for genome editing in various species. However, the applicability and efficiency of this method in large animal models, such as the goat, have not been extensively studied. Here, by co-injection of one-cell stage embryos with Cas9 mRNA and sgRNAs targeting two functional genes (MSTN and FGF5), we successfully produced gene-modified goats with either one or both genes disrupted. The targeting efficiency of MSTN and FGF5 in cultured primary fibroblasts was as high as 60%, while the efficiency of disrupting MSTN and FGF5 in 98 tested animals was 15% and 21% respectively, and 10% for double gene modifications. The on- and off-target mutations of the target genes in fibroblasts, as well as in somatic tissues and testis of founder and dead animals, were carefully analyzed. The results showed that simultaneous editing of several sites was achieved in large animals, demonstrating that the CRISPR/Cas9 system has the potential to become a robust and efficient gene engineering tool in farm animals, and therefore will be critically important and applicable for breeding.
The goat (Capra hircus) is one of the first farm animals that have undergone domestication and extensive natural and artificial selection by adapting to various environments, which in turn has resulted in its high level of phenotypic diversity. Here, we generated medium-coverage (9–13×) sequences from eight domesticated goat breeds, representing morphologically or geographically specific populations, to identify genomic regions representing selection signatures. We discovered ~10 million single nucleotide polymorphisms (SNPs) for each breed. By combining two approaches, ZHp and di values, we identified 22 genomic regions that may have contributed to the phenotypes in coat color patterns, body size, cashmere traits, as well as high altitude adaptation in goat populations. Candidate genes underlying strong selection signatures including coloration (ASIP, KITLG, HTT, GNA11, and OSTM1), body size (TBX15, DGCR8, CDC25A, and RDH16), cashmere traits (LHX2, FGF9, and WNT2), and hypoxia adaptation (CDK2, SOCS2, NOXA1, and ENPEP) were identified. We also identified candidate functional SNPs within selected genes that may be important for each trait. Our results demonstrated the potential of using sequence data in identifying genomic regions that are responsible for agriculturally significant phenotypes in goats, which in turn can be used in the selection of goat breeds for environmental adaptation and domestication.
Graphdiyne oxide (GDO), the oxidized form of graphdiyne (GDY), exhibits an ultrafast humidity response with an unprecedented response speed (ca. 7 ms), which is three times faster than that of graphene oxide (GO) with the same thickness and O/C ratio. The ultrafast humidity response of GDO is considered to benefit from the unique carbon hybridization of GDO, which contains acetylenic bonds that are more electron-withdrawing than ethylenic bonds in GO, consequently giving rise to a faster binding rate with water. This distinctive structure-based property enables the fabrication of a novel GDO-based humidity sensor with an ultrafast response speed and good selectivity against other kinds of gas molecules as well as high sensitivity. These properties allow the sensor to accurately monitor the respiration rate change of human and hypoxic rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.