Polymer coatings with a combined competence of strong bonding to diverse substrates, broad liquid repellency, and readily damage healing are in substantial demand in a range of applications. In this work, we develop damage-healable, oil-repellent supramolecular silicone (DOSS) coatings to harvest abovementioned properties by molecular engineering siloxane oligomers that can self-assemble onto coated substrates via multivalent hydrogen bonding. In addition to the readily damage-healing properties provided by reversible association/dissociation of hydrogen bonding motifs, the unique molecular configuration of the siloxane oligomers on coated substrates enables both robust repellency to organic liquids and strong bonding to various substrates including metals, plastics, and even Teflon. We envision that not only DOSS coatings can be applied in a range of energy, environmental, and biomedical applications that require long-term services in harsh environmental conditions but also the design strategy of the oligomers can be adopted in the development of supramolecular materials with desirable multifunctionality.
Mechanical exfoliation from bulk layered crystal is widely used for preparing two-dimensional (2D) layered materials, which involves not only out-of-plane interlayer cleavage but also in-plane fracture. Through a statistical analysis on the exfoliated 2D flakes, we reveal the in-plane cleavage behaviors of six representative layered materials, including graphene, h-BN, 2H phase MoS2, 1T phase PtS2, FePS3, and black phosphorus. In addition to the well-known interlayer cleavage, these 2D layered materials show a distinctive tendency to fracture along certain in-plane crystallography orientations. With theoretical modeling and analysis, these distinct in-plane cleavage behaviors can be understood as a result of the competition between the release of the elastic energy and the increase of the surface energy during the fracture process. More importantly, these in-plane cleavage behaviors provide a fast and noninvasive method using optical microscopy to identify the lattice direction of mechanical exfoliated 2D layered materials.
Abstract-In double patterning lithography (DPL) layout decomposition for 45 nm and below process nodes, two features must be assigned opposite colors (corresponding to different exposures) if their spacing is less than the minimum coloring spacing. However, there exist pattern configurations for which pattern features separated by less than the minimum coloring spacing cannot be assigned different colors. In such cases, DPL requires that a layout feature be split into two parts. We address this problem using two layout decomposition approaches based on a conflict graph. First, node splitting is performed at all feasible dividing points. Then, one approach detects conflict cycles in the graph which are unresolvable for DPL coloring, and determines the coloring solution for the remaining nodes using integer linear programming (ILP). The other approach, based on a different ILP problem formulation, deletes some edges in the graph to make it two-colorable, then finds the coloring solution in the new graph. We evaluate our methods on both real and artificial 45 nm testcases. Experimental results show that our proposed layout decomposition approaches effectively decompose given layouts to satisfy the key goals of minimized line-ends and maximized overlap margin. There are no design rule violations in the final decomposed layout.Index Terms-Double patterning lithography (DPL), integer linear programming (ILP), layout decomposition, node splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.