Healable silicone materials have great technical impact in coatings, smart actuators, and flexible electronics, however, current healable silicone materials lack mechanical tunability. Herein, we designed and synthesized a new type of healable silicone through hydrogen-bond assisted multiphase assembly of siloxane oligomers. Besides the enhanced mechanical strength, unique water-enhanced healing was observed in the polymer network which is due to the reversible dissociation/association of multivalent hydrogen bonds in the presence of water.
Here, we describe a simple method to prepare oil-repellent surfaces with inherent reactivity. Liquid-like copolymers with pendant reactive groups are covalently immobilized onto substrates via a sequential layer-by-layer method. The stable and transparent nanocoatings showed oil repellency to a broad range of organic liquids even in the presence of reactive sites. Functional molecules could be covalently immobilized onto the oil-repellent surfaces. Moreover, the liquid repellency can be maintained or finely tailored after post-chemical modification via synergically tailoring the film thickness, selection of capping molecules, and labeling degree of the capping molecules. Oil-repellent surfaces that are capable of post-functionalization would have technical implications in surface coatings, membrane separation, and biomedical and analytical technologies.
Polymer coatings with a combined competence of strong bonding to diverse substrates, broad liquid repellency, and readily damage healing are in substantial demand in a range of applications. In this work, we develop damage-healable, oil-repellent supramolecular silicone (DOSS) coatings to harvest abovementioned properties by molecular engineering siloxane oligomers that can self-assemble onto coated substrates via multivalent hydrogen bonding. In addition to the readily damage-healing properties provided by reversible association/dissociation of hydrogen bonding motifs, the unique molecular configuration of the siloxane oligomers on coated substrates enables both robust repellency to organic liquids and strong bonding to various substrates including metals, plastics, and even Teflon. We envision that not only DOSS coatings can be applied in a range of energy, environmental, and biomedical applications that require long-term services in harsh environmental conditions but also the design strategy of the oligomers can be adopted in the development of supramolecular materials with desirable multifunctionality.
Structural colors have profound implications in the fields of pigments, displays and sensors, but none of the current non-iridescent photonic materials can restore their functions after mechanical damage. Herein, we report the first self-healable organogel nanocomposites with angle-independent structural colors. The organogel nanocomposites were prepared through the co-assembly of oleophilic silica nanoparticles, silicone-based supramolecular gels, and carbon black. The organogel system enables amorphous aggregation of silica nanoparticles and the angle-independent structural colors in the nanocomposites. Moreover, the hydrogen bonding in the supramolecular gel provides self-healing ability to the system, and the structural colored films obtained could heal themselves in tens of seconds to restore storage modulus, structural color, and surface slipperiness from mechanical cuts or shear failure repeatedly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.