Resveratrol is a natural polyphenolic compound that prevents inflammation in chondrocytes and animal models of osteoarthritis (OA) via yet to be defined mechanisms. The purpose of this study was to determine whether the protective effect of resveratrol on IL-1β-induced human articular chondrocytes was associated with the TLR4/MyD88/NF-κB signaling pathway by incubating human articular chondrocytes (harvested from osteoarthritis patients) with IL-1β before treatment with resveratrol. Cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and TNFα levels in culture supernatants were measured by ELISA(Enzymelinked immunosorbent assay). The levels of TLR4 and its downstream signaling targets (MyD88 and TRAF6) and IL-1β were assessed by measuring the levels of mRNA and protein expression by real-time RT-PCR and western blot analysis, respectively, in addition to assessing NF-κB activation. In addition, TLR4 siRNA was used to block TLR4 expression in chondrocytes further demonstrating that resveratrol prevented IL-1β-mediated inflammation by TLR4 inhibition. We found that resveratrol prevented IL-1β-induced reduction in cell viability. Stimulation of chondrocytes with IL-1β caused a significant up-regulation of TLR4 and its downstream targets MyD88 and TRAF6 resulting in NF-κB activation associated with the synthesis of IL-1β and TNFα. These IL-1β-induced inflammatory responses were all effectively reversed by resveratrol. Furthermore, activation of NF-κB in chondrocytes treated with TLR4 siRNA was significantly attenuated, but not abolished, and exposure to resveratrol further reduced NF-κB translocation. These data suggested that resveratrol prevented IL-1β-induced inflammation in human articular chondrocytes at least in part by inhibiting the TLR4/MyD88/NF-κB signaling pathway suggesting that resveratrol has the potential to be used as a nutritional supplement to counteract OA symptoms.
The natural polyphenolic compound, resveratrol, has been shown to exhibit anti-osteoarthritic activity. Therefore it is hypothesized that resveratrol may serve as a nutritional supplement to counteract osteoarthritis (OA). However, the mechanisms responsible for these anti-osteoarthritic effects have not yet been fully elucidated. The aim of this study was to determine whether the biological effects of resveratrol against interleukin (IL)-1β‑induced inflammation in human articular chondrocytes involved both Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-dependent and -independent signaling pathways. Human articular chondrocytes derived from patients with OA were stimulated with IL-1β, and then co-treated with resveratrol. Cell viability was subsequently evaluated by MTS assays, and the concentrations of matrix metalloproteinase (MMP)-13 and the pro-inflammatory factor, IL-6, were detected in culture supernatants using ELISA. The mRNA and protein levels of downstream mediators of TLR4/MyD88-dependent and -independent signaling pathways were also assayed by RT-qPCR and western blot analysis, respectively. Our results revealed that resveratrol prevented the IL-1β-induced reduction in cell viability. Furthermore, stimulation of the chondrocytes with IL-1β resulted in a significant upregulation of TLR4 and downstream targets of both TLR4/MyD88-dependent and -independent signaling pathways that are associated with the synthesis of MMP-13 and IL-6. Correspondingly, IL-1β-induced catabolic and inflammatory responses were effectively reversed by resveratrol. Taken together, these data suggest that resveratrol exerted protective effects against matrix degradation and inflammation in OA-affected chondrocytes by inhibiting both TLR4/MyD88-dependent and -independent signaling pathways. Thus, resveratrol represents a potential treatment for OA and warrants further investigation.
Obesity has been associated with osteoarthritis (OA) due to increased mass and metabolic factors which are independent of the biomechanical contribution to joint load. Resveratrol, a natural polyphenolic compound, exerts protective effects on OA through its anti-inflammatory property. However, the mechanism of resveratrol on obesity-related OA is unclear. To investigate the effect and possible mechanism of oral resveratrol on obesity-related OA, we fed C57BL/6J mice with a high-fat diet (HFD) for 16 weeks to establish obesity-related OA model; then two doses (22.5 mg/kg and 45 mg/kg) of resveratrol were given by gavage for additional 12 weeks. Mice with HFD significantly increased body weights compared to the control mice, while resveratrol treatment did not cause obvious weight loss. Histological assessments showed that resveratrol at 45 mg/kg significantly improved OA symptoms. Levels of serum IL-1β and leptin were decreased by resveratrol treatment and positively correlated with Mankin scores. Moreover, resveratrol significantly inhibited the expression of TLR4 and TRAF6 in cartilage. These results suggest that HFD induced obesity can lead to the occurrence of OA, and resveratrol may alleviate OA pathology by decreasing the levels of systematic inflammation and/or inhibiting TLR4 signaling pathway in cartilage. Thus, resveratrol might be a promising therapeutic treatment for obesity-related OA.
The effects of resveratrol on osteoarthritis (OA) pathogenesis have been demonstrated in vitro and in animal models employing intra-articular injections. However, the potential for oral resveratrol supplements to mediate protective effects on OA have not been examined. Therefore, the aim of the present study was to investigate the potential anti-OA effects of oral resveratrol on mice fed a high-fat diet (HFD). C57BL/6J male mice were fed either a standard diet or a HFD, and a subset of the latter also received varying doses of resveratrol. Twelve weeks later, all of the animals were sacrificed and knee joints were evaluated with histological, immunohistochemical, and TUNEL analyses. Mice that received a HFD had significantly greater body weights than the control mice and also exhibited features consistent with knee OA. The mice that received a HFD in combination with low, intermediate, or high doses of resveratrol were only slightly heavier than the control mice at the end of 12 weeks. Quantitative histological assessments indicated that resveratrol treatment partly recovered joint structure in the mice that received a HFD, while high doses of resveratrol prevented the degradation of type II collagen into C-telopeptide of type II collagen (CTX-II) and retained type II collagen expression in cartilage. Furthermore, TUNEL analyses revealed a reduction in chondrocyte apoptosis in the resveratrol-treated mice compared with the HFD mice. Thus, oral resveratrol appears to exert anti-OA effects in a mouse model of HFD-induced OA, thereby highlighting the potential preventive and therapeutic value of administering resveratrol for obesity-associated OA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.