Propane/propene separation by cryogenic distillation is one of the most energy and cost intensive industrial processes. Adsorptive separation is a more energy-efficient alternative. Three isostructural zinc imidazolate zeolitic framework materials are found, for the first time, to be very promising in the separation of propene and propane based on their different diffusion rates. Fine-tuning of the pore opening size is critical for this type of separation.
The lattice defects in the bulk and on the surface of the halide perovskite layer serve as trap sites and recombination centers to annihilate photogenerated carriers, determining the performance and stability of perovskite optoelectronic devices. Herein, the previously reported surface defects passivation engineering is extended to a full defects passivation strategy through stereoscopically introducing the cysteamine hydrochloride (CSA‐Cl) in the bulk and on the surface of perovskites. First‐principle density functional theory (DFT) calculations are employed to theoretically verify the multiple defects passivation effect of the CAS‐Cl on the perovskite. The perovskite layer with full defects passivation exhibits superior carrier dynamics as revealed by femtosecond transient absorption due to the reduced defect density determined by a highly sensitive photothermal deflection spectroscopy technique. Consequently, a high efficiency approaching 21% is achieved for the inverted planar perovskite solar cells (PVSCs). More importantly, the CAS‐Cl passivated PVSCs exhibit operation in air, which will be beneficial for the in situ device test for understanding the photophysics involved. This work provides a promising strategy to reduce the defects in both the perovskite bulk and surface for superior optoelectronic properties, facilitating the development of highly efficient and stable PVSCs and other optoelectronic devices.
A simple but effective way to control the orientational arrangement of MoO3 nanoflakes is presented, which offers an opportunity to investigate the anisotropic properties of different crystallographic faces. Their electrical and optical properties are investigated. According to the polarized micro-Raman spectra, oxygen vacancies preferred to be located at the sharp side edges of the lamella, which might play an important role in the catalytic properties of samples. Ascribing to the unique structural geometry and the oxygen-defects-induced reduction of the work function, the electron field emission properties of the samples show that the erect MoO3 nanoflakes are potential candidates for the cold-cathode-based electronics. Furthermore, strong optical birefringence properties of samples are also first observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.