Considerable effort has been exerted to increase the scale of Linked Data. However, an inevitable problem arises when dealing with data integration from multiple sources. Various sources often provide conflicting objects for a certain predicate of the same real-world entity, thereby causing the so-called object conflict problem. At present, object conflict problem has not received sufficient attention in the Linked Data community. Thus, in this paper, we firstly formalize the object conflict resolution as computing the joint distribution of variables on a heterogeneous information network called the Source-Object Network, which successfully captures three correlations from objects and Linked Data sources. Then, we introduce a novel approach based on network effects called ObResolution (object resolution), to identify a true object from multiple conflicting objects. ObResolution adopts a pairwise Markov Random Field (pMRF) to model all evidence under a unified framework. Extensive experimental results on six real-world datasets show that our method achieves higher accuracy than existing approaches and it is robust and consistent in various domains.
Considerable effort has been made to increase the scale of Linked Data. However, because of the openness of the Semantic Web and the ease of extracting Linked Data from semi-structured sources (e.g., Wikipedia) and unstructured sources, many Linked Data sources often provide conflicting objects for a certain predicate of a real-world entity. Existing methods cannot be trivially extended to resolve conflicts in Linked Data because Linked Data has a scale-free property. In this demonstration, we present a novel system called TruthDiscover, to identify the truth in Linked Data with a scale-free property. First, TruthDiscover leverages the topological properties of the Source Belief Graph to estimate the priori beliefs of sources, which are utilized to smooth the trustworthiness of sources. Second, the Hidden Markov Random Field is utilized to model interdependencies among objects for estimating the trust values of objects accurately. TruthDiscover can visualize the process of resolving conflicts in Linked Data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.