In this paper, we formulate and investigate a stochastic one-prey and two-predator model with Holling II functional response and disease in the prey, in which the predators only feed on infected prey. The existence and uniqueness of global positive solution is proved by using conventional methods. The corresponding deterministic model has a disease-free equilibrium point if the basic reproduction number R 0 < 1, and it has three boundary equilibrium points and one positive equilibrium point if R 0 > 1. For the stochastic model, we investigate the asymptotic behavior around all of the five equilibrium points and prove that there is a unique ergodic stationary distribution under certain conditions. Moreover, we obtain the condition on which the population of the infected prey and the two predators will die out in the time mean sense. Finally, numerical simulations are conducted to illustrate our analysis results.
In this paper, we investigate the dynamics of a stochastic predator-prey model with ratio-dependent functional response and disease in the prey. Firstly, we prove the existence and uniqueness of the positive solution for the stochastic model by using conventional methods. Then we obtain the threshold 0 s R for the infected prey population, that is, the disease will tend to extinction if 0 1 s R < , and it will exist in the long time if 0 1 s R > . Finally, the sufficient condition on the existence of a unique ergodic stationary distribution is obtained, which indicates that all the populations are permanent in the time mean sense. Numerical simulations are conducted to verify our analysis results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.