Wide-area soil moisture sensing is a key element for smart irrigation systems. However, existing soil moisture sensing methods usually fail to achieve both satisfactory mobility and high moisture estimation accuracy. In this paper, we present the design and implementation of a novel soil moisture sensing system, named as SoilId, that combines a UAV and a COTS IR-UWB radar for wide-area soil moisture sensing without the need of burying any battery-powered in-ground device. Specifically, we design a series of novel methods to help SoilId extract soil moisture related features from the received radar signals, and automatically detect and discard the data contaminated by the UAV's uncontrollable motion and the multipath interference. Furthermore, we leverage the powerful representation ability of deep neural networks and carefully design a neural network model to accurately map the extracted radar signal features to soil moisture estimations. We have extensively evaluated SoilId against a variety of real-world factors, including the UAV's uncontrollable motion, the multipath interference, soil surface coverages, and many others. Specifically, the experimental results carried out by our UAV-based system validate that SoilId can push the accuracy limits of RF-based soil moisture sensing techniques to a 50% quantile MAE of 0.23%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.