Background BCMA-specific chimeric antigen receptor-T cells (CAR-Ts) have exhibited remarkable efficacy in refractory or relapsed multiple myeloma (RRMM); however, primary resistance and relapse exist with single-target immunotherapy. Bispecific CARs are proposed to mitigate these limitations. Methods We constructed a humanized bispecific BM38 CAR targeting BCMA and CD38 and tested the antimyeloma activity of BM38 CAR-Ts in vitro and in vivo. Twenty-three patients with RRMM received infusions of BM38 CAR-Ts in a phase I trial. Results BM38 CAR-Ts showed stronger in vitro cytotoxicity to heterogeneous MM cells than did T cells expressing an individual BCMA or CD38 CAR. BM38 CAR-Ts also exhibited potent antimyeloma activity in xenograft mouse models. In the phase I trial, cytokine release syndrome occurred in 20 patients (87%) and was mostly grade 1–2 (65%). Neurotoxicity was not observed. Hematologic toxicities were common, including neutropenia in 96% of the patients, leukopenia in 87%, anemia in 43% and thrombocytopenia in 61%. At a median follow-up of 9.0 months (range 0.5 to 18.5), 20 patients (87%) attained a clinical response and minimal residual disease-negativity (≤ 10–4 nucleated cells), with 12 (52%) achieving a stringent complete response. Extramedullary plasmacytoma was eliminated completely in 56% and partially in 33% and of 9 patients. The median progression-free survival was 17.2 months. Two relapsed patients maintained BCMA and CD38 expression on MM cells. Notably, BM38 CAR-Ts cells were detectable in 77.8% of evaluable patients at 9 months and 62.2% at 12 months. Conclusion Bispecific BM38 CAR-Ts were feasible, safe and significantly effective in patient with RRMM. Trial registration: Chictr.org.cn ChiCTR1800018143.
The ongoing outbreak of Coronavirus Disease 2019 (COVID-19) is hitting the world hard, but the relationship between coagulation disorders and COVID-19 is still not clear. This study aimed to explore whether early coagulation tests can predict risk stratification and prognosis. PubMed, Web of Science, Cochrane Library, and Scopus were searched electronically for relevant research studies published up to March 24, 2020, producing 24 articles for the final inclusion. The pooled standard mean difference (SMD) of coagulation parameters at admission were calculated to determine severe and composite endpoint conditions (ICU or death) in COVID-19 patients. Meta-analyses revealed that platelet count was not statistically related to disease severity and composite endpoint; elevated D-dimer correlated positively with disease severity (SMD 0.787 (0.277-1.298), P= 0.003, I 2 = 96.7%) but had no significant statistical relationship with composite endpoints. Similarly, patients with prolonged prothrombin time (PT) had an increased risk of ICU and increased risk of death (SMD 1.338 (0.551-2.125), P = 0.001, I 2 = 92.7%). Besides, increased fibrin degradation products (FDP) and decreased antithrombin might also mean the disease is worsening. Therefore, early coagulation tests followed by dynamic monitoring is useful for recognizing coagulation disorders accompanied by COVID-19 and guiding timely therapy to improve prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.