Smart garments, which can capture electrocardiogram signals at any time or location, can alert others to the risk of heart attacks and prevent sudden cardiac death when people are sleeping, walking, or running. Novel wearable electrodes for smart garments based on conductive chitosan fabrics were fabricated by electroless plating of silver nanoparticles onto the surfaces of the fibers. The electrical resistance, which is related to the silver content of the composite fabrics, can be as low as 0.0332 ± 0.0041 Ω/sq due to the strong reactivity between amine groups and silver ions. After washing these fabrics eight times, the electrical resistance remained below 1 Ω/sq. The conductive chitosan fabrics were applied to smart garments as wearable electrodes to capture electrocardiogram signals of the human body in static state, jogging state, and running state, which showed good data acquisition ability and sensitivity.
Wearable electronic textiles with high conductivity and excellent antibacterial activity are very desirable to minimize health risks and deteriorated performance of the electronic textiles in application. In this work, conductive fabrics were prepared with chitosan nonwovens with inherent antibacterial activity as the substrate. Silver nanoparticles (AgNPs) were synthesized in situ on the surface of chitosan fabric without any additional reducing agent, and silver nanowires (AgNWs) were adhered to the surface of AgNPs-coated chitosan fabrics by simple dip-coating cycles. The synergy of AgNPs and AgNWs enhances the conductivity of the fabric and the stability of AgNPs on the surface of the fabric. According to the analysis of scanning electron microscope and fourier transform infrared spectroscopy spectra, AgNPs were reduced in situ on the fabric. With synergy of AgNPs and AgNWs, the electrical resistance of the fabric is as low as low as 0.93 Ω/sq and 0.20 Ω/sq after one and four dip-coating cycles of AgNWs respectively. Thermogravimetric analysis and inhibition zone assay showed that combination of AgNPs and AgNWs enhanced the thermal stability and antibacterial activity of chitosan fabrics. The chitosan fabrics with conductivity, thermal stability and antibacterial activity can be used in electronic textiles for different applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.