An organocatalytic enantioselective decarboxylative Mannich reaction of malonic acid half oxyesters with cyclic ketimines was developed for the preparation of enantioenriched β‐amino esters with a quaternary stereogenic center and the anti‐HIV drug DPC 083 (see scheme).
This study investigated the phenolic compounds of 15 Chrysanthemum morifolium Ramat cv. ‘Hangbaiju’, including 6 ‘Duoju’ and 9 ‘Taiju’, using high performance liquid chromatography (HPLC). The antioxidant activities of these ‘Hangbaiju’ were estimated by DPPH, ABTS and FRAP assays. Results show that a total of 14 phenolic compounds were detected in these flowers, including 3 mono-caffeoylquinic acids, 3 di-caffeoylquinic acids, 1 phenolic acid and 7 flavonoids. ‘Duoju’ and ‘Taiju’ possess different concentrations of phenolic compounds, and ‘Taiju’ exhibits higher caffeoylquinic acids and stronger antioxidant activities than ‘Duoju’. Caffeoylquinic acids show a strong correlation with the antioxidant activities of the samples. Principal component analysis (PCA) reveals an obvious separation between ‘Duoju’ and ‘Taiju’, using phenolic compounds as variables. Apigenin-7-O-glucoside, 3,5-di-O-caffeoylquinic acid, luteolin and acacetin were found to be the key phenolic compounds to differentiate ‘Duoju’ from ‘Taiju’.
BackgroundGamma (γ)-Aminobutyric acid (GABA) as a bioactive compound is used extensively in functional foods, pharmaceuticals and agro-industry. It can be biosynthesized via decarboxylation of monosodium glutamate (MSG) or L-glutamic acid (L-Glu) by glutamate decarboxylase (GAD; EC4.1.1.15). GADs have been identified from a variety of microbial sources, such as Escherichia coli and lactic acid bacteria. However, no GADs from Streptomyces have been characterized. The present study is aimed to identify new GADs from Streptomyces strains and establish an efficient bioproduction platform for GABA in E. coli using these enzymes.ResultsBy sequencing and analyzing the genomes of three Streptomyces strains, three putative GADs were discovered, including StGAD from Streptomyces toxytricini NRRL 15443, SsGAD from Streptomyces sp. MJ654-NF4 and ScGAD from Streptomyces chromofuscus ATCC 49982. The corresponding genes were cloned from these strains and heterologously expressed in E. coli BL21(DE3). The purified GAD proteins showed a similar molecular mass to GadB from E. coli BL21(DE3). The optimal reaction temperature is 37 °C for all three enzymes, while the optimum pH values for StGAD, SsGAD and ScGAD are 5.2, 3.8 and 4.2, respectively. The kinetic parameters including Vmax, Km, kcat and kcat/Km values were investigated and calculated through in vitro reactions. SsGAD and ScGAD showed high biocatalytic efficiency with kcat/Km values of 0.62 and 1.21 mM− 1·s− 1, respectively. In addition, engineered E. coli strains harboring StGAD, SsGAD and ScGAD were used as whole-cell biocatalysts for production of GABA from L-Glu. E. coli/SsGAD showed the highest capability of GABA production. The cells were repeatedly used for 10 times, with an accumulated yield of 2.771 kg/L and an average molar conversion rate of 67% within 20 h.ConclusionsThree new GADs have been functionally characterized from Streptomyces, among which two showed higher catalytic efficiency than previously reported GADs. Engineered E. coli harboring SsGAD provides a promising cost-effective bioconversion system for industrial production of GABA.Electronic supplementary materialThe online version of this article (10.1186/s13036-019-0154-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.