Real-time monitoring of the mechanical behavior of cathode materials during the electrochemical cycle can help obtain an in-depth understanding of the working mechanism of lithium-ion batteries. The LiMn2O4 composite electrode is employed as the working electrode in this artificial cell, which is conceived and produced along with a chemo-mechanical coupling measurement system. The multi-layer beam composite electrode made of LiMn2O4 is monitored in real time using a CCD camera to track its curvature deformation. Experiments show that the curvature of the LiMn2O4 electrode decreases with the extraction of lithium ions and increases during the lithiation process. In the meantime, a theoretical framework was developed to examine the connection between curvature change and mechanical characteristics. Thus, the elastic modulus, strain, and stress of the LiMn2O4 composite electrode were extracted by combining the bending deformation and theoretical model. The results show that the elastic modulus of the LiMn2O4 composite electrode decreases from 59.61 MPa to 12.01 MPa with the extraction of lithium ions during the third cycle. Meanwhile, the stress decreases from 0.46 MPa to 0.001 MPa, and the strain reduces from 0.43 to 0. Its changes reverse during the lithiation process. Those findings could have made a further understanding of the mechanical properties in lithium-ion batteries.
Aim. Fuyang Jiedu Huayu (FYJDHY) granules are a combination of five traditional Chinese medicines with known therapeutic effects against chronic liver failure (CLF). The aim of the present study was to investigate the efficacy of FYJDHY to ameliorate the effects of carbon tetrachloride- (CCl4-) induced CLF in rats and to explore the possible molecular mechanisms underlying its therapeutic efficacy. Methods. A model of chronic liver failure was established by intraperitoneal injection of 50% carbon tetrachloride into SD rats for 8 weeks. After establishing the model, rats were treated with either low-dose (4.725 kg/d), medium-dose (9.45 kg/d), or high-dose (18.9 g/kg/d) FYJDHY for 2 weeks. After treatment, samples of liver tissue and blood were harvested from rats in each group. Serum ALT, AST, and TBIL levels and prothrombin time were measured using a biochemical analyzer. The expression of Gab1 (Grb2-associated binder 1), TPO (thrombopoietin), and its receptor c-Mpl were measured using quantitative real-time PCR (RT-PCR) and Western blot analysis, and assessment of histological improvement in liver tissue was by H&E-stained tissue sections. Results. Compared with the model group, serum ALT, AST, and TBIL levels and PT of rats in the intervention group were significantly reduced (
P
<
0.05
). In addition, FYJDHY alleviated pathological damage to liver tissue and increased the expression of Gab1, TPO, and its receptor c-Mpl in liver tissue, to levels statistically significant compared with the model group (
P
<
0.05
). Conclusions. The therapeutic effect of FYJDHY on CLF may be related to the promotion of angiogenesis and improvement in hemopoietic function in individuals suffering from CLF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.