Functionalized iron oxide nanoparticles (IONPs) are of great interest due to wide range applications, especially in nanomedicine. However, they face challenges preventing their further applications such as rapid agglomeration, oxidation, etc. Appropriate surface modification of IONPs can conquer these barriers with improved physicochemical properties. This review summarizes recent advances in the surface modification of IONPs with small organic molecules, polymers and inorganic materials. The preparation methods, mechanisms and applications of surface-modified IONPs with different materials are discussed. Finally, the technical barriers of IONPs and their limitations in practical applications are pointed out, and the development trends and prospects are discussed.
Here we report a facile switchable fluorescent QD probe for F(-) ions, which is based on the hydrogen bonding-driven aggregation and the analyte-triggered disaggregation.
Luminescent solar concentrators (LSCs) have attracted significant attention as promising solar energy conversion devices for building integrated photovoltaic (PV) systems due to their simple architecture and cost‐effective fabrication. Conventional LSCs are generally comprised of an optical waveguide slab with embedded emissive species and coupled PV cells. Colloidal semiconductor quantum dots (QDs) have been demonstrated as efficient emissive species for high‐performance LSCs because of their outstanding optical properties including tunable absorption and emission spectra covering the ultraviolet/visible to near‐infrared region, high photoluminescence quantum yield, large absorption cross sections, and considerable photostability. However, current commonly used QDs for high‐performance LSCs consist of highly toxic heavy metals (i.e., cadmium and lead), which are fatal to human health and the environment. In this regard, it is highly desired that heavy metal‐free and environmentally friendly QD‐based LSCs are comprehensively studied. Here, notable advances and developments of LSCs based on unary, binary, and ternary eco‐friendly QDs are presented. The synthetic approaches, optical properties of these eco‐friendly QDs, and consequent device performance of QD‐based LSCs are discussed in detail. A brief outlook pointing out the existing challenges and prospective developments of eco‐friendly QD‐based LSCs is provided, offering guidelines for future device optimizations and commercialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.