Artemisinins are the corner stone of anti-malarial drugs1. Emergence and spread of resistance to them2–4 raises risk of wiping out recent gains achieved in reducing world-wide malaria burden and threatens future malaria control and elimination on a global level. Genome wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance5–10. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase as well as its lipid product phosphatidylinositol 3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signaling, where transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.
Oxidative dealkylation is a unique mechanistic pathway found in the alpha-ketoglutarate-Fe(II)-dependent AlkB family of enzymes to remove the alkylation damage to DNA bases and regenerate nucleobases to their native state. The B3LYP density functional combined with a self-consistent reaction field was used to explore the triplet, quintet, and septet spin-state potential energy surfaces of the multistep catalytic mechanism of AlkB. The mechanism was found to consist of four stages. First, binding of dioxygen to iron in the active-site complex occurs concerted with electron transfer, thereby yielding a ferric-superoxido species. Second, competing initiation for the activation of oxygen to generate the high-valent iron-oxygen intermediates (ferryl-oxo Fe(IV)O and ferric-oxyl Fe(III)O(*) species) was found to occur on the quintet and septet surfaces. Then, conformational reorientation of the activated iron-oxygen ligand was found to be nearly thermoneutral with a barrier of ca. 50 kJ mol(-1). The final stage is the oxidative dealkylation of the damaged nucleobase with the rate-controlling step being the abstraction of a hydrogen atom from the damaging methyl group by the ferryl-oxo ligand. For this step, the calculated barrier of 87.4 kJ mol(-1) is in good agreement with the experimental activation energy of ca. 83 kJ mol(-1) for the enzyme-catalyzed reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.