The basic premise of regional ecological construction would be to scientifically and effectively grasp the characteristics of land use change and its impact on landscape ecological risk. The research objects of this paper are the typical areas of the Yellow River Basin in China and “process-change-drive” as the logical main line. Moreover, this paper is based on multi-period land use remote sensing data from 2000 to 2020, the regional land use change process and influencing factors are identified, the temporal and spatial evolution and response process of landscape ecological risk are discussed, and the land use zoning control strategy to reduce ecological risk is put forward. The results indicated: (1) The scale and structure of land use show the characteristics of “many-to-one” and “one-to-many”; (2) the process of land use change is affected by the alternation of multiple factors. The natural environment and socio-economic factors dominate in the early stage and the location and policy factors have a significant impact in the later stage; (3) the overall landscape ecological risk level and conversion rate show a trend of “high in the southeast, low in the northwest”, shift from low to high and landscape ecological risks gradually increase; and (4) in order to improve the regional ecological safety and according to the characteristics of landscape ecological risk and spatial heterogeneity, we should adopt the management and control zoning method and set different levels of control intensity (from key intensity to strict intensity to general intensity), and develop differentiated land use control strategies.
Taking the Bohai Economic Rim as the research area and 44 prefecture-level cities as research objects, on the basis of deepening the connotation of urban land use morphology, we constructed a multi-dimensional indicator system for urban land use transition based on the dominant and recessive morphologies of land use. The patterns of change and transition type are described by single-morphology and comprehensive morphology indices, respectively, while a decoupling elastic coefficient model was used to analyze the coupling relationship and evolution process between the dominant and recessive morphologies of urban land use. The results showed the following: (1) From 2000 to 2020, the single-morphology and comprehensive morphology indices of urban land use in the Bohai Economic Rim both improved, to a certain extent. Overall, the transition types of dominant and recessive morphologies of urban land use showed a development trend, in which the degree of recessive morphology transition was higher than the degree of dominant morphology transition, and the spatial difference of its distribution pattern was obvious. (2) From 2000 to 2020, the type of coupling relationship between the dominant and recessive morphologies of urban land use in the Bohai Economic Rim experienced an evolution, from a single-morphology recession decoupling to a single-morphology leading positive hook. The whole region was in the benign development stage of close coupling, where the degree of transition showed the spatial characteristics of Beijing–Tianjin–Hebei > Liaodong Peninsula > Shandong Peninsula. (3) Differences in the economic levels and urbanization processes of different cities led to different paths, speeds, and degrees of urban land use transition, showing stable, volatile, and non-transition paths. The direct influence of different influencing factors, as well as their potential effects, drive the dominant and recessive morphologies of urban land use to grow, in terms of coupling and synergy, promoting the realization of urban land use transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.