This paper measures the stability of cross-linguistic register variation. A register is a variety of a language that is associated with extra-linguistic context. The relationship between a register and its context is functional: the linguistic features that make up a register are motivated by the needs and constraints of the communicative situation. This view hypothesizes that register should be universal, so that we expect a stable relationship between the extra-linguistic context that defines a register and the sets of linguistic features which the register contains. In this paper, the universality and robustness of register variation is tested by comparing variation within versus between register-specific corpora in 60 languages using corpora produced in comparable communicative situations: tweets and Wikipedia articles. Our findings confirm the prediction that register variation is, in fact, universal.
Breast density has been recognised as an important biomarker that indicates the risk of developing breast cancer. Accurate classification of breast density plays a crucial role in developing a computer-aided detection (CADe) system for mammogram interpretation. This paper proposes a novel texture descriptor, namely, rotation invariant uniform local quinary patterns (RIU4-LQP), to describe texture patterns in mammograms and to improve the robustness of image features. In conventional processing schemes, image features are obtained by computing histograms from texture patterns. However, such processes ignore very important spatial information related to the texture features. This study designs a new feature vector, namely, K-spectrum, by using Baddeley’s K-inhom function to characterise the spatial distribution information of feature point sets. Texture features extracted by RIU4-LQP and K-spectrum are utilised to classify mammograms into BI-RADS density categories. Three feature selection methods are employed to optimise the feature set. In our experiment, two mammogram datasets, INbreast and MIAS, are used to test the proposed methods, and comparative analyses and statistical tests between different schemes are conducted. Experimental results show that our proposed method outperforms other approaches described in the literature, with the best classification accuracy of 92.76% (INbreast) and 86.96% (MIAS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.