Understanding co-occurrence in urban human mobility (i.e. people from two regions visit an urban place during the same time span) is of great value in a variety of applications, such as urban planning, business intelligence, social behavior analysis, as well as containing contagious diseases. In recent years, the widespread use of mobile phones brings an unprecedented opportunity to capture large-scale and fine-grained data to study co-occurrence in human mobility. However, due to the lack of systematic and efficient methods, it is challenging for analysts to carry out in-depth analyses and extract valuable information. In this paper, we present TelCoVis, an interactive visual analytics system, which helps analysts leverage their domain knowledge to gain insight into the co-occurrence in urban human mobility based on telco data. Our system integrates visualization techniques with new designs and combines them in a novel way to enhance analysts' perception for a comprehensive exploration. In addition, we propose to study the correlations in co-occurrence (i.e. people from multiple regions visit different places during the same time span) by means of biclustering techniques that allow analysts to better explore coordinated relationships among different regions and identify interesting patterns. The case studies based on a real-world dataset and interviews with domain experts have demonstrated the effectiveness of our system in gaining insights into co-occurrence and facilitating various analytical tasks.
Fig. 1: Our visualization system supports emotion analysis across three modalities (i.e., face, text, and audio) at different levels of details. The video view (a) summarizes each video in the collection and enables quick identification of videos of interest. The channel coherence view (b) shows emotion coherence of the three modalities at the sentence level and provides extracted features for channel exploration. The detail view (c) supports detail exploration for a selected sentence with some highlighted features and transition points. The sentence clustering view (d) provides a summary of the video and reveals the temporal patterns of emotion information. The word view (e) enables efficient quantitative analysis at the word level in the video transcript.Abstract-Emotions play a key role in human communication and public presentations. Human emotions are usually expressed through multiple modalities. Therefore, exploring multimodal emotions and their coherence is of great value for understanding emotional expressions in presentations and improving presentation skills. However, manually watching and studying presentation videos is often tedious and time-consuming. There is a lack of tool support to help conduct an efficient and in-depth multi-level analysis. Thus, in this paper, we introduce EmoCo, an interactive visual analytics system to facilitate efficient analysis of emotion coherence across facial, text, and audio modalities in presentation videos. Our visualization system features a channel coherence view and a sentence clustering view that together enable users to obtain a quick overview of emotion coherence and its temporal evolution. In addition, a detail view and word view enable detailed exploration and comparison from the sentence level and word level, respectively. We thoroughly evaluate the proposed system and visualization techniques through two usage scenarios based on TED Talk videos and interviews with two domain experts. The results demonstrate the effectiveness of our system in gaining insights into emotion coherence in presentations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.