On the basis of low-cost, rich resources, and safety performance, aluminum-ion batteries have been regarded as a promising candidate for next-generation energy storage batteries in large-scale energy applications. A rechargeable aluminum-ion battery has been fabricated based on a 3D hierarchical copper sulfide (CuS) microsphere composed of nanoflakes as cathode material and room-temperature ionic liquid containing AlCl and 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) as electrolyte. The aluminum-ion battery with a microsphere electrode exhibits a high average discharge voltage of ∼1.0 V vs Al/AlCl, reversible specific capacity of about 90 mA h g at 20 mA g, and good cyclability of nearly 100% Coulombic efficiency after 100 cycles. Such remarkable electrochemical performance is attributed to the well-defined nanostructure of the cathode material facilitating the electron and ion transfer, especially for chloroaluminate ions with large size, which is desirable for aluminum-ion battery applications.
For significantly increasing the energy densities to satisfy the growing demands, new battery materials and electrochemical chemistry beyond conventional rocking-chair based Li-ion batteries should be developed urgently. Rechargeable aluminum batteries (RABs) with the features of low cost, high safety, easy fabrication, environmental friendliness, and long cycling life have gained increasing attention. Although there are pronounced advantages of utilizing earth-abundant Al metals as negative electrodes for high energy density, such RAB technologies are still in the preliminary stage and considerable efforts will be made to further promote the fundamental and practical issues. For providing a full scope in this review, we summarize the development history of Al batteries and analyze the thermodynamics and electrode kinetics of nonaqueous RABs. The progresses on the cutting-edge of the nonaqueous RABs as well as the advanced characterizations and simulation technologies for understanding the mechanism are discussed. Furthermore, major challenges of the critical battery components and the corresponding feasible strategies toward addressing these issues are proposed, aiming to guide for promoting electrochemical performance (high voltage, high capacity, large rate capability, and long cycling life) and safety of RABs. Finally, the perspectives for the possible future efforts in this field are analyzed to thrust the progresses of the state-of-the-art RABs, with expectation of bridging the gap between laboratory exploration and practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.