Tumor markers are important substances for assessing cancer development. In recent years, RNA tumor markers have attracted significant attention, and studies have shown that their abnormal expression of post-transcriptional regulatory genes is associated with tumor progression. Therefore, RNA tumor markers are considered as potential targets in clinical diagnosis and prognosis. Many studies show that biosensors have good application prospects in the field of medical diagnosis. The application of biosensors in RNA tumor markers is developing rapidly. These sensors have the advantages of high sensitivity, excellent selectivity, and convenience. However, the detection abundance of RNA tumor markers is low. In order to improve the detection sensitivity, researchers have developed a variety of signal amplification strategies to enhance the detection signal. In this review, after a brief introduction of the sensing principles and designs of different biosensing platforms, we will summarize the latest research progress of electrochemical, photoelectrochemical, and fluorescent biosensors based on signal amplification strategies for detecting RNA tumor markers. This review provides a high sensitivity and good selectivity sensing platform for early-stage cancer research. It provides a new idea for the development of accurate, sensitive, and convenient biological analysis in the future, which can be used for the early diagnosis and monitoring of cancer and contribute to the reduction in the mortality rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.