TGF-β is considered to be an important immuno regulatory cytokine. However, it remains unknown whether and how the muscle fiber specific-TGF-β signaling is directly involved in intramuscular inflammatory regulation by affecting T cells. Here, we addressed these in a mouse tibialis anterior muscle Cardiotoxin injection-induced injury repair model in MCK-Cre control or transgenic mice with TGF-β receptor II (TGF-βr2) being specifically deleted in muscle cells (SM TGF-βr2-/-). In control mice, TGF-β2 and TGF-βr2 were found significantly up-regulated in muscle after the acute injury. In mutant mice, deficiency of TGF-β signaling in muscle cells caused more serious muscle inflammation, with the increased infiltration of macrophages and CD4+ T cells at the degeneration stage (D4) and the early stage of regeneration (D7) after myoinjury. Notably, the loss of TGF-β signaling in myofibers dramatically affected on CD4+ T cell function and delayed T cells withdrawal at the later stage of muscle regeneration (D10 and D15), marked by the elevated Th17, but the impaired Tregs response. Furthermore, in vivo and in vitro, the intrinsic TGF-β signaling affected on immune behaviors of muscle cells, and directed CD4+ T cells differentiation by impairing IL-6 production and release. It suggests that local muscle inflammation can be inhibited potentially by directly activating the TGF-β signaling pathway in muscle cells to suppress Th17, but induce Tregs responses. Thus, according to the results of this study, we found a new idea for the control of local acute inflammation in skeletal muscle.
Skeletal muscle repair and systemic inflammation/immune responses are linked to endoplasmic reticulum stress (ER stress) pathways in myopathic muscle, and muscle cells play an active role in muscular immune reactions by exhibiting immunological characteristics under persistent proinflammation stimuli. Whether ER stress affects the intrinsic immunological capacities of myocytes in the inflammatory milieu, as it does to immune cells, and which arms of the unfolded protein response (UPR) mainly participate in these processes remain mostly unknown. We investigated this issue and showed that inflammatory stimuli can induce the activation of the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1α (IRE1α) arms of the UPR in myocytes both in vivo and in vitro. UPR stressor administration reversed the increased IFN-γ-induced expression of the MHC-II molecule H2-Ea, the MHC-I molecule H-2Kb, toll-like receptor 3 (TLR3) and some proinflammatory myokines in differentiated primary myotubes in vitro. However, further IRE1α inhibition thoroughly corrected the trend in the UPR stressor-triggered suppression of immunobiological molecules. In IFN-γ-treated myotubes, dramatic p38 MAPK activation was observed under IRE1α inhibitory conditions, and the pharmacological inhibition of p38 reversed the immune molecule upregulation induced by IRE1α inhibition. In parallel, our coculturing system verified that the ovalbumin (OVA) antigen presentation ability of inflamed myotubes to OT-I T cells was enhanced by IRE1α inhibition, but was attenuated by further p38 inhibition. Thus, the present findings demonstrated that p38 MAPK contributes greatly to IRE1α arm-dependent immunobiological suppression in myocytes under inflammatory stress conditions.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
As the understanding of skeletal muscle inflammation is increasingly clarified, the role of Treg cells in the treatment of skeletal muscle diseases has attracted more attention in recent years. A consensus has been reached that the regulation of Treg cells is the key to completing the switch of inflammation and repair of skeletal muscle, whose presence directly determine the repairing quality of the injured skeletal muscle. However, the functioning process of Treg cells remains unreported, thereby making it necessary to summarize the current role of Treg cells in skeletal muscle. In this review, the characteristics, origins, and cellular kinetics of these Treg cells are firstly described; Then, the relationship between Treg cells and muscle satellite cells (MuSCs), conventional T cells (Tconv) is discussed (the former is involved in the entire repair and regeneration process, while the latter matters considerably in causing most skeletal muscle autoimmune diseases); Next, focus is placed on the control of Treg cells on the phenotypic switch of macrophages, which is the key to the switch of inflammation; Finally, factors regulating the functional process of Treg cells are analyzed, and a regulatory network centered on Treg cells is summarized. The present study summarizes the cell-mediated interactions in skeletal muscle repair over the past decade, and elucidates the central role of regulatory T cells in this process, so that other researchers can more quickly and comprehensively understand the development and direction of this very field. It is believed that the hereby proposed viewpoints and problems can provide fresh visions for the latecomers.
Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are involved in various muscle pathological states. The IRE1α arm of UPR can affect immunological properties of myofiber through restraining p38 mitogen-activated protein kinases (MAPK) activation under inflammatory milieu. However, the relevant pathway molecules regulating the initiation of the IRE1α arm in myofiber remain unclear. In this work, expression of transforming growth factor-beta (TGF-β) and TGF-β receptor II (TGF-βr2), and UPR pathway activation were examined in cardiotoxin (CTX)-damaged mouse muscle, which revealed the activation of TGF-β signaling and UPR in CTX-damaged muscle and in regenerating myofibers. Using control or transgenic mice with TGF-βr2 deleted in skeletal muscle (SM TGF-βr2−/−) and the derived primary differentiating myogenic precursor cells (MPCs) treated with/without ERS activator or inhibitor, IRE1α pathway inhibitor, or TGF-β signaling activator, this study further revealed an essential role of intrinsic TGF-β signaling in regulating muscle cell to express inflammation-related molecules including H-2Kb, H2-Eα, TLR3, and special myokines. TGF-β signaling prompted UPR IRE1α arm and restrained p38 MAPK activation in myofiber under inflammatory milieu. This study uncovers a previously unrecognized function of TGF-β signaling acting as an upstream factor controlling myofiber immune capacities in the inflamed state through the UPR–IRE1α–p38 MAPK pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.