In this study, the microstructures of the silica and styrene/acrylate particles and rheological behaviour of the three STFs were measured. The acoustic property and impact behaviour of 3D printed structures filled with STFs were investigated. The results showed that sound transmission loss (STL) of the structures filled with 46.5 vol% silica-based and 58.8 vol% styrene/acrylate-based STFs have been significantly improved, while their sound absorption coefficient (SAC) reduced greatly. The internal damage mechanism and energy absorption of honeycomb structures filled with different volume fraction STFs under low-velocity impact (LVI) loading were analysed, finding that the volume fractions and nanoparticles hardness of STFs has a significant influence on the impact resistance of the 3D printed honeycomb structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.